Librería: ALLBOOKS1, Direk, SA, Australia
EUR 105,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carrito
Publicado por Springer International Publishing, Springer International Publishing, 2024
ISBN 10: 3031413393 ISBN 13: 9783031413391
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 105,65
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 424.
EUR 109,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 424.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 96,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 106,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 112,11
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 424.
Publicado por Springer Nature Switzerland Nov 2024, 2024
ISBN 10: 3031413393 ISBN 13: 9783031413391
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of the availability of machine learning methods over different software platforms.After introducing the machine learning basics, the focus turns to a broad spectrum of topics: model selection and regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained and comprises an initial theoretical part, where the basics of the methodologies are explained, followed by an applicative part, where the methods are applied to real-world datasets. Numerous examples are included and, for ease of reproducibility, the Python, R, and Stata codes used in the text, along with the related datasets, are available online.The intended audience is PhD students, researchers and practitioners from various disciplines, including economics and other social sciences, medicine and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software, and who want to apply machine learning methods in their work.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 424 pp. Englisch.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 116,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 124,20
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 119,01
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing, 2023
ISBN 10: 3031413369 ISBN 13: 9783031413360
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of the availability of machine learning methods over different software platforms.After introducing the machine learning basics, the focus turns to a broad spectrum of topics: model selection and regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained and comprises an initial theoretical part, where the basics of the methodologies are explained, followed by an applicative part, where the methods are applied to real-world datasets. Numerous examples are included and, for ease of reproducibility, the Python, R, and Stata codes used in the text, along with the related datasets, are available online.The intended audience is PhD students, researchers and practitioners from various disciplines, including economics and other social sciences, medicine and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software, and who want to apply machine learning methods in their work.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 127,54
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10: 3031413369 ISBN 13: 9783031413360
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of the availability of machine learning methods over different software platforms.After introducing the machine learning basics, the focus turns to a broad spectrum of topics: model selection and regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained and comprises an initial theoretical part, where the basics of the methodologies are explained, followed by an applicative part, where the methods are applied to real-world datasets. Numerous examples are included and, for ease of reproducibility, the Python, R, and Stata codes used in the text, along with the related datasets, are available online.The intended audience is PhD students, researchers and practitioners from various disciplines, including economics and other social sciences, medicine and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software, and who want to apply machine learning methods in their work.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 424 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 77,17
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.
Publicado por Springer International Publishing, Springer International Publishing Nov 2024, 2024
ISBN 10: 3031413393 ISBN 13: 9783031413391
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of the availability of machine learning methods over different software platforms.After introducing the machine learning basics, the focus turns to a broad spectrum of topics: model selection and regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained and comprises an initial theoretical part, where the basics of the methodologies are explained, followed by an applicative part, where the methods are applied to real-world datasets. Numerous examples are included and, for ease of reproducibility, the Python, R, and Stata codes used in the text, along with the related datasets, are available online.The intended audience is PhD students, researchers and practitioners from various disciplines, including economics and other social sciences, medicine and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software, and who want to apply machine learning methods in their work. 424 pp. Englisch.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3031413369 ISBN 13: 9783031413360
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 107,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 129,04
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por Springer International Publishing Okt 2023, 2023
ISBN 10: 3031413369 ISBN 13: 9783031413360
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the fundamental theoretical notions of supervised machine learning along with a wide range of applications using Python, R, and Stata. It provides a balance between theory and applications and fosters an understanding and awareness of the availability of machine learning methods over different software platforms.After introducing the machine learning basics, the focus turns to a broad spectrum of topics: model selection and regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained and comprises an initial theoretical part, where the basics of the methodologies are explained, followed by an applicative part, where the methods are applied to real-world datasets. Numerous examples are included and, for ease of reproducibility, the Python, R, and Stata codes used in the text, along with the related datasets, are available online.The intended audience is PhD students, researchers and practitioners from various disciplines, including economics and other social sciences, medicine and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software, and who want to apply machine learning methods in their work. 424 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 132,78
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.