Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 28,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.01.
EUR 45,22
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 49,73
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Pearson Education (US), US, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 48,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problemExplore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)Understand how algorithms can be parallelized synchronously and asynchronouslyRun algorithms in SLM Lab and learn the practical implementation details for getting deep RL to workExplore algorithm benchmark results with tuned hyperparametersUnderstand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 48,73
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. In.
Publicado por Pearson Education (US), US, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 53,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problemExplore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)Understand how algorithms can be parallelized synchronously and asynchronouslyRun algorithms in SLM Lab and learn the practical implementation details for getting deep RL to workExplore algorithm benchmark results with tuned hyperparametersUnderstand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 48,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 39,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 40,50
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 59,32
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
EUR 28,28
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Publicado por Addison-Wesley Professional 12/15/2019, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 48,46
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Foundations of Deep Reinforcement Learning: Theory and Practice in Python 1.1. Book.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 41,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 46,07
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 55,07
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 53,63
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 379 pages. 9.00x7.00x0.50 inches. In Stock.
Publicado por Pearson Education (US), US, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 62,87
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New. The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problemExplore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)Understand how algorithms can be parallelized synchronously and asynchronouslyRun algorithms in SLM Lab and learn the practical implementation details for getting deep RL to workExplore algorithm benchmark results with tuned hyperparametersUnderstand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publicado por Pearson Education Dez 2019, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 52,62
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - In just a few years, deep reinforcement learning (DRL) systems such as DeepMinds DQN have yielded remarkable results. This hybrid approach to machine learning shares many similarities with human learning: its unsupervised self-learning, self-discovery of strategies, usage of memory, balance of exploration and exploitation, and its exceptional flexibility. Exciting in its own right, DRL may presage even more remarkable advances in general artificial intelligence.
Publicado por Pearson Education (US), US, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 64,10
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New. The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problemExplore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)Understand how algorithms can be parallelized synchronously and asynchronouslyRun algorithms in SLM Lab and learn the practical implementation details for getting deep RL to workExplore algorithm benchmark results with tuned hyperparametersUnderstand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 57,39
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 65,20
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 379 pages. 9.00x7.00x0.50 inches. In Stock.
Publicado por Addison-Wesley Professional (edition 1), 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
EUR 26,15
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
EUR 59,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand new! Please provide a physical shipping address.
Publicado por Addison-Wesley Professional, 2019
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: ZBK Books, Carlstadt, NJ, Estados Unidos de America
EUR 27,67
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: very_good. Fast Shipping - Very good and clean conditions used book. Minor cosmetic defects may be present. Pages and cover intact. May include limited library marks, notes marks and highlighting.
Publicado por Pearson Education (US), Boston, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 62,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games - such as Go, Atari games, and DotA 2 - to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelised synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designedThis guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Pearson Education (US), Boston, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 77,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games - such as Go, Atari games, and DotA 2 - to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelised synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designedThis guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Pearson Education (US), Boston, 2020
ISBN 10: 0135172381 ISBN 13: 9780135172384
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 48,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games - such as Go, Atari games, and DotA 2 - to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelised synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designedThis guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.