Librería: Buchpark, Trebbin, Alemania
EUR 37,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Seiten: 62 | Sprache: Englisch | Produktart: Bücher.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 53,68
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 56,60
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Now Publishers 8/14/2024, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 52,22
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Energy-Efficient Time-Domain Computation for Edge Devices: Challenges and Prospects 0.22. Book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 49,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 54,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 56,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 66,22
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 62 pages. 6.14x0.13x9.21 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 61,00
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 81,68
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por now publishers Inc, Hanover, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 62,61
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor.However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metaloxidesemiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used.This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work. This monograph reviews state-of-the-art time-domain accelerators and discusses system considerations and hardware implementations. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 62,26
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 99.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 69,83
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor.However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metal-oxide-semiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used.This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 85,42
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 89,42
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.