Publicado por Universities Press, 2017
Librería: Vedams eBooks (P) Ltd, New Delhi, India
EUR 19,89
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoSoft cover. Condición: New. This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the d autonomous case for one matrix A via induced dynamical systems in R and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students. (jacket).
Publicado por American Mathematical Society
Idioma: Inglés
Librería: Books in my Basket, New Delhi, India
EUR 24,41
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoN.A. Condición: New. ISBN:9781470437299 N.A.
Publicado por American Mathematical Society, Providence, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Original o primera edición
EUR 61,86
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Fine. 1st Edition. No Markings.
Publicado por Providence, American Mathematical Society, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 53,81
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. XV, 284 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04823 9780821883198 Sprache: Englisch Gewicht in Gramm: 1150.
Publicado por Amer Mathematical Society, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 96,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Graduate Studies in Mathematics. Num Pages: 291 pages. BIC Classification: PBF. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 262 x 195 x 18. Weight in Grams: 696. . 2014. Hardcover. . . . .
Publicado por MP-AMM American Mathematical, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 108,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Amer Mathematical Society, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 111,80
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Graduate Studies in Mathematics. Num Pages: 291 pages. BIC Classification: PBF. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 262 x 195 x 18. Weight in Grams: 696. . 2014. Hardcover. . . . . Books ship from the US and Ireland.
Publicado por American Mathematical Society, US, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 131,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in {R}^d and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems.The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
Publicado por American Mathematical Society, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 116,03
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 999.
Publicado por American Mathematical Society, US, 2014
ISBN 10: 0821883194 ISBN 13: 9780821883198
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 123,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in {R}^d and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems.The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.