Idioma: Inglés
Publicado por Independently published, 2017
ISBN 10: 1724048473 ISBN 13: 9781724048479
Librería: Revaluation Books, Exeter, Reino Unido
EUR 14,88
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 54 pages. 10.00x8.00x0.14 inches. In Stock.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 52,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 146,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 162,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 149,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 165,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 166,71
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 187,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2024
ISBN 10: 9811975566 ISBN 13: 9789811975561
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 211,31
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 214,07
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 2023rd edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Mai 2023, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model¿s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Mai 2024, 2024
ISBN 10: 9811975566 ISBN 13: 9789811975561
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model¿s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 175,77
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model's owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 175,09
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model's owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.
Librería: UK BOOKS STORE, London, LONDO, Reino Unido
EUR 246,89
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Brand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 244,69
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 241 pages. 9.25x6.10x0.79 inches. In Stock.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Mai 2024, 2024
ISBN 10: 9811975566 ISBN 13: 9789811975561
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model's owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings. 244 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Mai 2023, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model's owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings. 244 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 150,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Digital Watermarking for Machine Learning Model | Techniques, Protocols and Applications | Lixin Fan (u. a.) | Taschenbuch | xvi | Englisch | 2024 | Springer | EAN 9789811975561 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: preigu, Osnabrück, Alemania
EUR 150,30
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Digital Watermarking for Machine Learning Model | Techniques, Protocols and Applications | Lixin Fan (u. a.) | Buch | xvi | Englisch | 2023 | Springer | EAN 9789811975530 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 222,62
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 225,26
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 227,72
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 230,38
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.