Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 57,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 52,68
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 56,53
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 57,09
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 61,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 65,03
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 63,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 185.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 64,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 63,04
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor and Francis Ltd, GB, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 81,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Publicado por Chapman and Hall/CRC 2022-05, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 63,40
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 71,28
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 83,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 164 pages. 9.25x6.25x0.25 inches. In Stock.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 111,24
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 109,45
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 116,33
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 421.
Publicado por Taylor and Francis Ltd, GB, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 75,66
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 160,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. New. book.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 57,36
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand This item is printed on demand.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 70,47
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 59,95
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 68,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: moluna, Greven, Alemania
EUR 53,56
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, w.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 117,57
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: moluna, Greven, Alemania
EUR 111,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, w.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 104,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Based on interdisciplinary research into 'Directional Change', a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ('zigzags'). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics:Data science: as an alternative to time series, price movements in a market can be summarised as directional changesMachine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov ModelRegime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional ChangeMarket Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changedAlgorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.