Publicado por APRESS, 2022
ISBN 10: 1484283589 ISBN 13: 9781484283585
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 28,67
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 43,76
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 39,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
ISBN 10: 8868808552 ISBN 13: 9788868808556
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 37,95
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 41,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 55,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Second Edition. Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 57,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Second Edition. Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 35,13
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 48,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 54,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 69,56
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Second Edition. Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 74,34
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Second Edition. Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 72,62
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 57,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 81,07
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 382 pages. 9.75x7.00x1.00 inches. In Stock.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 59,88
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether its for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 64,19
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field.New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs.Whether it¿s for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 660 pp. Englisch.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 38,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: clickgoodwillbooks, Indianapolis, IN, Estados Unidos de America
EUR 37,41
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: acceptable. Used - Acceptable: All pages and the cover are intact, but shrink wrap, dust covers, or boxed set case may be missing. Pages may include limited notes, highlighting, or minor water damage but the text is readable. Item may be missing bundled media.
ISBN 10: 8868808552 ISBN 13: 9788868808556
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 38,56
Convertir monedaCantidad disponible: 8 disponibles
Añadir al carritoCondición: Brand New. New.SoftCover International edition. Different ISBN and Cover image but contents are same as US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: liu xing, Nanjing, JS, China
EUR 92,12
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New. Language:Chinese.Paperback. Pub Date: 2022-11-01 Pages: 244 Publisher: Tsinghua University Press This book focuses on the basic concepts of deep reinforcement learning theory. cutting-edge basic theory and Python application implementation. First introduce the basics of Markov decision-making. model-based algorithms. model-free methods. dynamic programming. Monte Carlo. and function approximation; then elaborate on algorithms such as reinforcement learning. deep reinforcement learning. and mu.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 64,19
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field.New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs.Whether it's for applications in gaming, robotics, or Generative AI,Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRLWork with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch. 660 pp. Englisch.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 73,44
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 67,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field.New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs.Whether it's for applications in gaming, robotics, or Generative AI,Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRLWork with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases, and Optuna Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, 2024
ISBN 13: 9798868802720
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 80,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.