Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
EUR 9,44
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Librería: Greenworld Books, Arlington, TX, Estados Unidos de America
EUR 9,46
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: good. Fast Free Shipping â" Good condition book with a firm cover and clean, readable pages. Shows normal use, including some light wear or limited notes highlighting, yet remains a dependable copy overall. Supplemental items like CDs or access codes may not be included.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 20,50
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
EUR 24,04
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less.
Publicado por Packt Publishing 6/28/2018, 2018
ISBN 10: 1788836529 ISBN 13: 9781788836524
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 37,02
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow. Book.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 34,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 44,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Packt Publishing 9/30/2020, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 46,41
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Deep Reinforcement Learning with Python - Second Edition. Book.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 43,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 37,77
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 49,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Packt Publishing 2018-06, 2018
ISBN 10: 1788836529 ISBN 13: 9781788836524
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 35,31
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 48,74
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Packt Publishing 2020-09, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 45,57
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 48,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 53,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Packt Publishing Limited, GB, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 70,76
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithmsKey FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrationsBook DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari gamesWho this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 72,89
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 75,24
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
EUR 55,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Deep Reinforcement Learning with Python - Second Edition will help you learn reinforcement learning algorithms, techniques and architectures - including deep reinforcement learning - from scratch. This new edition is an extensive update of the original, ref.
Publicado por Packt Publishing Limited, GB, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 66,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithmsKey FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrationsBook DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari gamesWho this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.
Publicado por Packt Publishing Limited, 2018
ISBN 10: 1788836529 ISBN 13: 9781788836524
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 42,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing Limited, 2018
ISBN 10: 1788836529 ISBN 13: 9781788836524
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 38,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
ISBN 10: 7111612884 ISBN 13: 9787111612889
Librería: liu xing, Nanjing, JS, China
EUR 93,46
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. Paperback. Pub Date: 2019-01-01 Pages: 203 Language: Chinese Publisher: Mechanical Industry Press Reinforcement learning is an important machine learning method. and has many applications in the fields of agent and analysis and prediction. Python Intensive Learning Practice: Applying OpenAI Gym and TensorFlow to Master Reinforcement Learning and.
Publicado por Packt Publishing Limited, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 58,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing Limited, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 48,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing Limited, 2018
ISBN 10: 1788836529 ISBN 13: 9781788836524
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 42,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Publicado por Packt Publishing Limited, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 54,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222.
Publicado por Packt Publishing, Limited, 2020
ISBN 10: 1839210680 ISBN 13: 9781839210686
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 62,19
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 760.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 55,50
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A hands-on guide enriched with examples to master deep reinforcement learning algorithms with PythonKey Features:Your entry point into the world of artificial intelligence using the power of PythonAn example-rich guide to master various RL and DRL algorithmsExplore various state-of-the-art architectures along with mathBook Description:Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning.By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.What You Will Learn:Understand the basics of reinforcement learning methods, algorithms, and elementsTrain an agent to walk using OpenAI Gym and TensorflowUnderstand the Markov Decision Process, Bellman's optimality, and TD learningSolve multi-armed-bandit problems using various algorithmsMaster deep learning algorithms, such as RNN, LSTM, and CNN with applicationsBuild intelligent agents using the DRQN algorithm to play the Doom gameTeach agents to play the Lunar Lander game using DDPGTrain an agent to win a car racing game using dueling DQNWho this book is for:If you're a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.