Librería: California Books, Miami, FL, Estados Unidos de America
EUR 74,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 72,01
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 94,26
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 91,36
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 124,68
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: CitiRetail, Stevenage, Reino Unido
EUR 79,42
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 128,45
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 95,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: Rarewaves.com UK, London, Reino Unido
EUR 112,79
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 74,45
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 77,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 72,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 134,65
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 135,92
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 82,39
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification.