Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 56,26
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 65,25
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 60,10
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pages cm.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 68,43
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pages cm First edition Includes bibliographical references and index.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 57,43
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 69,53
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pages cm.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 66,83
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 65,74
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 82,42
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 194 pages. 9.18x6.12x9.21 inches. In Stock.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 98,67
Cantidad disponible: 3 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 100,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 102,36
Cantidad disponible: 3 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 90,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 105,51
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 111,29
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 110,38
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 101,79
Cantidad disponible: 3 disponibles
Añadir al carritoHardcover. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 104,70
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. In.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 105,66
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 185.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2023
ISBN 10: 1032502983 ISBN 13: 9781032502984
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 121,26
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics. This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 105,99
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 120,29
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 2023. 1st Edition. Hardcover. . . . . .
Librería: Revaluation Books, Exeter, Reino Unido
EUR 125,28
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 232 pages. 9.19x6.13x0.32 inches. In Stock.
Idioma: Inglés
Publicado por Taylor and Francis Ltd, GB, 2023
ISBN 10: 1032502983 ISBN 13: 9781032502984
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 139,32
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Idioma: Inglés
Publicado por Taylor and Francis Ltd, GB, 2023
ISBN 10: 1032502983 ISBN 13: 9781032502984
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 148,39
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 147,63
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 2023. 1st Edition. Hardcover. . . . . . Books ship from the US and Ireland.
Librería: moluna, Greven, Alemania
EUR 114,12
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. Yinpeng Wang received the B.S. degree in Electronic and Information Engineering from Beihang University, Beijing, China in 2020, where he is currently pursuing his M.S. degree in Electronic Science and Technology. Mr. Wang focuses on the.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 156,99
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 232 pages. 9.19x6.13x0.32 inches. In Stock.
Idioma: Inglés
Publicado por Taylor and Francis Ltd, GB, 2023
ISBN 10: 1032502983 ISBN 13: 9781032502984
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 142,04
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Librería: preigu, Osnabrück, Alemania
EUR 127,20
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems | Yinpeng Wang (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2023 | CRC Press | EAN 9781032502984 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.