Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 75,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 69,00
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 67,99
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 97,53
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2017. 1st ed. Paperback. . . . . .
Librería: Revaluation Books, Exeter, Reino Unido
EUR 113,07
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 286 pages. 10.00x7.00x1.00 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 120,90
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2017. 1st ed. Paperback. . . . . . Books ship from the US and Ireland.
Librería: preigu, Osnabrück, Alemania
EUR 71,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Data Mining Algorithms in C++ | Data Patterns and Algorithms for Modern Applications | Timothy Masters | Taschenbuch | xiv | Englisch | 2017 | Apress | EAN 9781484233146 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 82,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 636.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 85,05
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your dataDiscover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the dataWork with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methodsSee how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the dataPlot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.