Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 90,57
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2020, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 61,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Energy utilities are constantly under pressure to meet the growing complicated energy demands. The traditional energy grid allows for one-way communication of energy usage between customers and utilities. This does not allow utilities to control or to suggest any changes in the consumption based on the obtained energy data. In this book, we design and implement innovative secure and reliable two-way communication between homes and the Utility. In this context, different houses communicate their energy usage, while an electric transformer relays action requests from the energy utility's headquarters. This enables the real-time tracking of energy usage by both consumers and the utility. Therefore, the efficiency of energy generation and distribution is enhanced, and consumers are empowered to make smarter decisions about their consumption. To this end, we develop and compare several machine Learning and Data Analytics models predicting energy consumption. The obtained results show that our proposed models perform better than existing ones for time-series energy forecasting.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: preigu, Osnabrück, Alemania
EUR 53,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Data Communication and Analytics for Smart Grid Systems | Diverse Forecasting Models | Arslan Ahmed (u. a.) | Taschenbuch | Englisch | 2020 | LAP LAMBERT Academic Publishing | EAN 9786202924269 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2020, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 61,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Energy utilities are constantly under pressure to meet the growing complicated energy demands. The traditional energy grid allows for one-way communication of energy usage between customers and utilities. This does not allow utilities to control or to suggest any changes in the consumption based on the obtained energy data. In this book, we design and implement innovative secure and reliable two-way communication between homes and the Utility. In this context, different houses communicate their energy usage, while an electric transformer relays action requests from the energy utility's headquarters. This enables the real-time tracking of energy usage by both consumers and the utility. Therefore, the efficiency of energy generation and distribution is enhanced, and consumers are empowered to make smarter decisions about their consumption. To this end, we develop and compare several machine Learning and Data Analytics models predicting energy consumption. The obtained results show that our proposed models perform better than existing ones for time-series energy forecasting. 136 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: Majestic Books, Hounslow, Reino Unido
EUR 93,85
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: moluna, Greven, Alemania
EUR 50,66
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ahmed ArslanArslan Ahmed received his Master of Applied Science degree in Electrical Engineering from Carleton University, Ottawa, Canada. He is now a Data Scientist at IBM, Toronto, Canada. Dr. Zied Bouida and Professor Mohamed Ibnk.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 96,38
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202924268 ISBN 13: 9786202924269
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 62,64
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Energy utilities are constantly under pressure to meet the growing complicated energy demands. The traditional energy grid allows for one-way communication of energy usage between customers and utilities. This does not allow utilities to control or to suggest any changes in the consumption based on the obtained energy data. In this book, we design and implement innovative secure and reliable two-way communication between homes and the Utility. In this context, different houses communicate their energy usage, while an electric transformer relays action requests from the energy utility's headquarters. This enables the real-time tracking of energy usage by both consumers and the utility. Therefore, the efficiency of energy generation and distribution is enhanced, and consumers are empowered to make smarter decisions about their consumption. To this end, we develop and compare several machine Learning and Data Analytics models predicting energy consumption. The obtained results show that our proposed models perform better than existing ones for time-series energy forecasting.