Publicado por VDM Verlag Dr. Müller E.K. Nov 2012, 2012
ISBN 10: 3836478609 ISBN 13: 9783836478601
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 49,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 112 pp. Englisch.
Publicado por Vdm Verlag Dr Mueller E K, 2008
ISBN 10: 3836478609 ISBN 13: 9783836478601
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 94,17
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 112 pages. 8.66x5.91x0.26 inches. In Stock.
Librería: moluna, Greven, Alemania
EUR 39,24
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Yun SangwoonSangwoon Yun: PhD in Mathematics at University of Washington. Research interest: Convex and nonsmooth optimization, variational analysis. Research Fellow at National University of Singapore.Nonsmooth optimization pr.
Publicado por VDM Verlag Dr. Müller E.K. Nov 2012, 2012
ISBN 10: 3836478609 ISBN 13: 9783836478601
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 49,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems. 112 pp. Englisch.
Publicado por VDM Verlag Dr. Müller E.K., 2010
ISBN 10: 3836478609 ISBN 13: 9783836478601
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 49,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems.