Publicado por Springer Nature Singapore, Springer Nature Singapore, 2025
ISBN 10: 9819789060 ISBN 13: 9789819789061
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 272,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume includes chapters on topics presented at the conference on Recent Trends in Convex Optimization: Theory, Algorithms and Applications (RTCOTAA-2020), held at the Department of Mathematics, Indian Institute of Technology Patna, Bihar, India, from 29-31 October 2020. Itdiscusses a comprehensive exploration of the realm of optimization, encompassing both the theoretical underpinnings and the multifaceted real-life implementations of the optimization theory. It meticulously features essential optimization concepts, such as convex analysis, generalized convexity, monotonicity, etc., elucidating their theoretical advancements and significance in the optimization sphere. Multiobjective optimization is a pivotal topic which addresses the inherent difficulties faced in conflicting objectives. The book delves into various theoretical concepts and covers some practical algorithmic approaches to solve multiobjective optimization, such as the line search and the enhanced non-monotone quasi-Newton algorithms. It also deliberates on several other significant topics in optimization, such as the perturbation approach for vector optimization, and solution methods for set-valued optimization. Nonsmooth optimization is extensively covered, with in-depth discussions on various well-known tools of nonsmooth analysis, such as convexificators, limiting subdifferentials, tangential subdifferentials, quasi-differentials, etc.Notable optimization algorithms, such as the interior point algorithm and Lemke's algorithm, are dissected in detail, offering insights into their applicability and effectiveness. The book explores modern applications of optimization theory, for instance, optimized image encryption, resource allocation, target tracking problems, deep learning, entropy optimization, etc. Ranging from gradient-based optimization algorithms to metaheuristic approaches such as particle swarm optimization, the book navigates through the intersection of optimization theory and deep learning, thereby unravelling new research perspectives in artificial intelligence, machine learning and other fields of modern science. Designed primarily for graduate students and researchers across a variety of disciplines such as mathematics, operations research, electrical and electronics engineering, computer science, robotics, deep learning, image processing and artificial intelligence, this book serves as a comprehensive resource for someone interested in exploring the multifaceted domain of mathematical optimization and its myriad applications.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 357,53
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Singapore, Springer Nature Singapore Apr 2025, 2025
ISBN 10: 9819789060 ISBN 13: 9789819789061
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 267,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume includes chapters on topics presented at the conference on Recent Trends in Convex Optimization: Theory, Algorithms and Applications (RTCOTAA-2020), held at the Department of Mathematics, Indian Institute of Technology Patna, Bihar, India, from 29-31 October 2020. Itdiscusses a comprehensive exploration of the realm of optimization, encompassing both the theoretical underpinnings and the multifaceted real-life implementations of the optimization theory. It meticulously features essential optimization concepts, such as convex analysis, generalized convexity, monotonicity, etc., elucidating their theoretical advancements and significance in the optimization sphere. Multiobjective optimization is a pivotal topic which addresses the inherent difficulties faced in conflicting objectives. The book delves into various theoretical concepts and covers some practical algorithmic approaches to solve multiobjective optimization, such as the line search and the enhanced non-monotone quasi-Newton algorithms. It also deliberates on several other significant topics in optimization, such as the perturbation approach for vector optimization, and solution methods for set-valued optimization. Nonsmooth optimization is extensively covered, with in-depth discussions on various well-known tools of nonsmooth analysis, such as convexificators, limiting subdifferentials, tangential subdifferentials, quasi-differentials, etc.Notable optimization algorithms, such as the interior point algorithm and Lemke's algorithm, are dissected in detail, offering insights into their applicability and effectiveness. The book explores modern applications of optimization theory, for instance, optimized image encryption, resource allocation, target tracking problems, deep learning, entropy optimization, etc. Ranging from gradient-based optimization algorithms to metaheuristic approaches such as particle swarm optimization, the book navigates through the intersection of optimization theory and deep learning, thereby unravelling new research perspectives in artificial intelligence, machine learning and other fields of modern science. Designed primarily for graduate students and researchers across a variety of disciplines such as mathematics, operations research, electrical and electronics engineering, computer science, robotics, deep learning, image processing and artificial intelligence, this book serves as a comprehensive resource for someone interested in exploring the multifaceted domain of mathematical optimization and its myriad applications. 720 pp. Englisch.
Publicado por Springer Nature Singapore, Springer Nature Singapore Apr 2025, 2025
ISBN 10: 9819789060 ISBN 13: 9789819789061
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 267,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This volume includes chapters on topics presented at the conference on Recent Trends in Convex Optimization: Theory, Algorithms and Applications (RTCOTAA-2020), held at the Department of Mathematics, Indian Institute of Technology Patna, Bihar, India, from 29-31 October 2020. It discusses a comprehensive exploration of the realm of optimization, encompassing both the theoretical underpinnings and the multifaceted real-life implementations of the optimization theory. It meticulously features essential optimization concepts, such as convex analysis, generalized convexity, monotonicity, etc., elucidating their theoretical advancements and significance in the optimization sphere. Multiobjective optimization is a pivotal topic which addresses the inherent difficulties faced in conflicting objectives. The book delves into various theoretical concepts and covers some practical algorithmic approaches to solve multiobjective optimization, such as the line search and the enhanced non-monotone quasi-Newton algorithms. It also deliberates on several other significant topics in optimization, such as the perturbation approach for vector optimization, and solution methods for set-valued optimization. Nonsmooth optimization is extensively covered, with in-depth discussions on various well-known tools of nonsmooth analysis, such as convexificators, limiting subdifferentials, tangential subdifferentials, quasi-differentials, etc.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 720 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 376,67
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 388,19
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.