Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (13)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (13)
  • Como nuevo, Excelente o Muy bueno (No hay ningún otro resultado que coincida con este filtro.)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (No hay ningún otro resultado que coincida con este filtro.)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (6)
  • No impresión bajo demanda (8)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 45 (No hay ningún otro resultado que coincida con este filtro.)
  • Más de EUR 45 
Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Publicado por Springer, 2023

    ISBN 10: 3031287363 ISBN 13: 9783031287367

    Idioma: Inglés

    Librería: Ria Christie Collections, Uxbridge, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 5,19 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New. In.

  • Gülay Canbalo¿lu

    Publicado por Springer International Publishing, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it. This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner. A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network's own network structure characteristics. This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach. Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively. It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved. Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning. This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions.

  • Gülay Canbalo¿lu

    Publicado por Springer International Publishing, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it. This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner. A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network's own network structure characteristics. This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach. Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively. It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved. Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning. This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions.

  • Gülay Canbalo¿lu

    Publicado por Springer Nature Switzerland Jun 2024, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 35,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Neuware -Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it.This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner.A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network¿s own network structure characteristics.This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming.This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models.Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach.Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively.It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved.Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning.This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 528 pp. Englisch.

  • Gülay Canbalo¿lu

    Publicado por Springer International Publishing, Springer International Publishing Jun 2023, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 35,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Neuware -Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it.This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner.A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network¿s own network structure characteristics.This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming.This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models.Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach.Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively.It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved.Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning.This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 528 pp. Englisch.

  • Publicado por Springer, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: Books Puddle, New York, NY, Estados Unidos de America

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 9,83 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. 2023rd edition NO-PA16APR2015-KAP.

  • Jan Treur

    Publicado por Springer International Publishing AG, Cham, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 64,09 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it. This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner. A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the networks own network structure characteristics. This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach. Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively. It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved. Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design. Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning. This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Canbaloglu, Gülay (Editor)/ Treur, Jan (Editor)/ Wiewiora, Anna (Editor)

    Publicado por Springer Nature, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,55 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Hardcover. Condición: Brand New. 526 pages. 9.25x6.10x1.22 inches. In Stock.

  • Publicado por Springer, Berlin|Springer International Publishing|Springer, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: moluna, Greven, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 19,49 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning.

  • Gülay Canbaloglu

    Publicado por Springer, Berlin, Springer International Publishing, Springer, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it. This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner. A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network's own network structure characteristics. This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach. Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively. It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved. Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning. This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions. 515 pp. Englisch.

  • Gülay Canbalo¿lu

    Publicado por Springer International Publishing Jun 2023, 2023

    ISBN 10: 3031287347 ISBN 13: 9783031287343

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Although there is much literature on organisational learning, mathematical formalisation and computational simulation, there is no literature that uses mathematical modelling and simulation to represent and explore different facets of multilevel learning. This book provides an overview of recent work on mathematical formalisation and computational simulation of multilevel organisational learning by exploiting the possibilities of self-modeling network models to address it. This is the first book addressing mathematical formalisation and computational modeling of multilevel organisational learning in a systematic, principled manner. A self-modeling network modeling approach from AI and Network Science is used where in a reflective manner some of the network nodes (called self-model nodes) represent parts of the network's own network structure characteristics. This is supported by a dedicated software environment allowing to design and implement (higher-order) adaptive network models by specifying them in a conceptual manner at a high level of abstraction in a standard table format, without any need of algorithmic specification or programming. This modeling approach allows to model the development of knowledge in an organisational setting in a neatly structured manner at three different levels for the usage, adaptation and control, respectively, of the underlying mental models. Several examples of realistic cases of multilevel organisational learning are used to illustrate the approach. Crucial concepts such as the aggregation of mental models to form shared mental models out of individual mental models are addressed extensively. It is shown how to model context-sensitive control of organisational learning taking into account a wide variety of context factors, for example relating to levels of expertise of individuals or to leadership styles of managers involved. Mathematical equilibrium analysis of models of organisational learning is also addressed, among others allowing verification of correctness of the implemental models in comparison to their conceptual design.Chapters in this book also contribute to the Management and Business Sciences research by demonstrating how computational modeling can be used to capture complex management phenomena such as multilevel organizational learning. This book has a potential implication for practice by demonstrating how computational modeling can be used to capture learning scenarios, which then provide a basis for more informed managerial decisions. 528 pp. Englisch.

  • Publicado por Springer, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: Majestic Books, Hounslow, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 10,22 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. Print on Demand.

  • Publicado por Springer, 2024

    ISBN 10: 3031287371 ISBN 13: 9783031287374

    Idioma: Inglés

    Librería: Biblios, Frankfurt am main, HESSE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 14,50 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. PRINT ON DEMAND.