Publicado por Berlin, Springer-Verlag, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 19,50
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover. 114 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16662 3540183167 Sprache: Englisch Gewicht in Gramm: 550.
Publicado por Springer Berlin Heidelberg, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher.
Publicado por Springer Berlin Heidelberg, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 31,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Berlin Heidelberg, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unitary dilations and characteristic operator functions. It has turned out that the theory has to be based on analytic functions on algebraic manifolds and not on functions of several independent variables as was previously believed. This follows from the generalized Cayley-Hamilton Theorem, due to M.S.Livsic: 'Two commuting operators with finite dimensional imaginary parts are connected in the generic case, by a certain algebraic equation whose degree does not exceed the dimension of the sum of the ranges of imaginary parts.' Such investigations have been carried out in two directions. One of them, presented by L.L.Waksman, is related to semigroups of projections of multiplication operators on Riemann surfaces. Another direction, which is presented here by M.S.Livsic is based on operator colligations and collective motions of systems. Every given wave equation can be obtained as an external manifestation of collective motions. The algebraic equation mentioned above is the corresponding dispersion law of the input-output waves.
Publicado por Springer Berlin Heidelberg 2008-10-10, 2008
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 29,02
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
EUR 26,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. *Price HAS BEEN REDUCED by 10% until Monday, Sept. 15 (weekend SALE item)* 118 pp., Paperback, ex library else text clean and binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Sep 1987, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unitary dilations and characteristic operator functions. It has turned out that the theory has to be based on analytic functions on algebraic manifolds and not on functions of several independent variables as was previously believed. This follows from the generalized Cayley-Hamilton Theorem, due to M.S.Livsic: 'Two commuting operators with finite dimensional imaginary parts are connected in the generic case, by a certain algebraic equation whose degree does not exceed the dimension of the sum of the ranges of imaginary parts.' Such investigations have been carried out in two directions. One of them, presented by L.L.Waksman, is related to semigroups of projections of multiplication operators on Riemann surfaces. Another direction, which is presented here by M.S.Livsic is based on operator colligations and collective motions of systems. Every given wave equation can be obtained as an external manifestation of collective motions. The algebraic equation mentioned above is the corresponding dispersion law of the input-output waves. 120 pp. Englisch.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 43,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 35,23
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Springer Berlin Heidelberg, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 55,12
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1987 edition. 118 pages. 9.25x6.10x0.28 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 38,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin Heidelberg Sep 1987, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unitary dilations and characteristic operator functions. It has turned out that the theory has to be based on analytic functions on algebraic manifolds and not on functions of several independent variables as was previously believed. This follows from the generalized Cayley-Hamilton Theorem, due to M.S.Livsic: 'Two commuting operators with finite dimensional imaginary parts are connected in the generic case, by a certain algebraic equation whose degree does not exceed the dimension of the sum of the ranges of imaginary parts.' Such investigations have been carried out in two directions. One of them, presented by L.L.Waksman, is related to semigroups of projections of multiplication operators on Riemann surfaces. Another direction, which is presented here by M.S.Livsic is based on operator colligations and collective motions of systems. Every given wave equation can be obtained as an external manifestation of collective motions. The algebraic equation mentioned above is the corresponding dispersion law of the input-output waves. 120 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 1987
ISBN 10: 3540183167 ISBN 13: 9783540183167
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 26,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unit.