Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 31,41
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, 2015
ISBN 10: 3031011244 ISBN 13: 9783031011245
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 36,63
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por Springer International Publishing, Springer International Publishing Jan 2015, 2015
ISBN 10: 3031011244 ISBN 13: 9783031011245
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 88 pp. Englisch.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 46,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, 2014
ISBN 10: 3031011236 ISBN 13: 9783031011238
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics. An efficient rain removal algorithm using meteorological properties of rain is developed. The relation among the orientation of the raindrops, wind velocity and terminal velocity is established. This relation is used in the estimation of shape-based features of the raindrop. Meteorological property-based features helped to discriminate the rain and non-rain pixels. Most of the prior art algorithms are designed for the videos captured by a static camera. The use of global motion compensation with all rain removal algorithms designed for videos captured by static camera results in better accuracy for videos captured by moving camera. Qualitative and quantitative results confirm that probabilistic temporal, spatiotemporal and meteorological algorithms outperformed other prior art algorithms in terms of the perceptual quality, buffer size, execution delay and system cost. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Rain / Dataset and Performance Metrics / Important Rain Detection Algorithms / Probabilistic Approach for Detection and Removal of Rain / Impact of Camera Motion on Detection of Rain / Meteorological Approach for Detection and Removal of Rain from Videos / Conclusion and Scope of Future Work / Bibliography / Authors' Biographies.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 56,27
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por Springer International Publishing, Springer International Publishing Dez 2014, 2014
ISBN 10: 3031011236 ISBN 13: 9783031011238
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics. An efficient rain removal algorithm using meteorological properties of rain is developed. The relation among the orientation of the raindrops, wind velocity and terminal velocity is established. This relation is used in the estimation of shape-based features of the raindrop. Meteorological property-based features helped to discriminate the rain and non-rain pixels. Most of the prior art algorithms are designed for the videos captured by a static camera. The use of global motion compensation with all rain removal algorithms designed for videos captured by static camera results in better accuracy for videos captured by moving camera. Qualitative and quantitative results confirm that probabilistic temporal, spatiotemporal and meteorological algorithms outperformed other prior art algorithms in terms of the perceptual quality, buffer size, execution delay and system cost. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Rain / Dataset and Performance Metrics / Important Rain Detection Algorithms / Probabilistic Approach for Detection and Removal of Rain / Impact of Camera Motion on Detection of Rain / Meteorological Approach for Detection and Removal of Rain from Videos / Conclusion and Scope of Future Work / Bibliography / Authors' BiographiesSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch.
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
EUR 15,69
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritopaperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
EUR 15,69
Convertir monedaCantidad disponible: 12 disponibles
Añadir al carritopaperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 27,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing Jan 2015, 2015
ISBN 10: 3031011244 ISBN 13: 9783031011245
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 26,74
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. 88 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 36,01
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2015
ISBN 10: 3031011244 ISBN 13: 9783031011245
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 25,86
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a sing.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 38,21
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer International Publishing Dez 2014, 2014
ISBN 10: 3031011236 ISBN 13: 9783031011238
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics. An efficient rain removal algorithm using meteorological properties of rain is developed. The relation among the orientation of the raindrops, wind velocity and terminal velocity is established. This relation is used in the estimation of shape-based features of the raindrop. Meteorological property-based features helped to discriminate the rain and non-rain pixels. Most of the prior art algorithms are designed for the videos captured by a static camera. The use of global motion compensation with all rain removal algorithms designed for videos captured by static camera results in better accuracy for videos captured by moving camera. Qualitative and quantitative results confirm that probabilistic temporal, spatiotemporal and meteorological algorithms outperformed other prior art algorithms in terms of the perceptual quality, buffer size, execution delay and system cost. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Rain / Dataset and Performance Metrics / Important Rain Detection Algorithms / Probabilistic Approach for Detection and Removal of Rain / Impact of Camera Motion on Detection of Rain / Meteorological Approach for Detection and Removal of Rain from Videos / Conclusion and Scope of Future Work / Bibliography / Authors' Biographies 96 pp. Englisch.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2014
ISBN 10: 3031011236 ISBN 13: 9783031011238
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 38,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vis.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 57,06
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 59,77
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.