Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (5)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (5)
  • Como nuevo, Excelente o Muy bueno (No hay ningún otro resultado que coincida con este filtro.)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (No hay ningún otro resultado que coincida con este filtro.)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Encuadernación

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (4)
  • No impresión bajo demanda (4)

Idioma (1)

Precio

Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Daniel Fretwell

    Publicado por GRIN Verlag, 2011

    ISBN 10: 3640969316 ISBN 13: 9783640969319

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Number Theory, grade: Postgraduate, University of Sheffield, language: English, abstract: This document is a continuation of my Semester 1 project on class field theory. In the previous work, we made a rounded exposition of the fundamentals of class field theory but in order to preserve the document length the main proofs had to be skipped. We concentrate on filling in the gaps in this second installment. Due to the need to complete the arguments left open last semester and the need for applications this part of the project is a little longer than it should have been. It was not mentioned in the previous project but the class field theory we are studying here is global class field theory. There is such a thing as local class field theory in which we study the Abelian extensions of local fields (essentially fields that arise as completions of a number field with respect to places). Actually we touch on these ideas slightly in this project but never quite get to de_ning a local Artin map and looking at the local analogues of the main theorems of global class field theory. For those wanting to continue on to study local class field theory, consider Chapter 7 of [2] To start off this project we shall first restate the main de_nitions and theorems. This will be brief and those wanting to remind themselves of the details should consult my Semester 1 project. There will be very little motivation or technical results here since this was the purpose of the work done previously. We then set out to prove the main theorems of class field theory. With our present knowledge this would not be a simple task and we soon find that we first have to invent or discover new concepts such as the idele group and the corresponding idele class group. These are topological devices that take stock of all completions of a number eld at once. Such constructions will make the theory much easier to understand and formulate, whilst at the same time generalising the theory to all Abelian extensions. The cohomology of nite Abelian groups will be introduced and used alongside the idele theory to establish an important inequality. We use L-series in conjunction with the ideal theory to establish another important inequality. Combining the two inequalities will give a nice result that allows us to prove Artin reciprocity. In order to prove the existence theorem we resort to using Kummer n-extensions and the notion of a class eld. This middle chunk of the project will be quite technical but hopefully enjoyable and illuminating. [.].

  • Daniel Fretwell

    Publicado por GRIN Verlag, GRIN Verlag Aug 2011, 2011

    ISBN 10: 3640969316 ISBN 13: 9783640969319

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 35,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Neuware -Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Number Theory, grade: Postgraduate, University of Sheffield, language: English, abstract: This document is a continuation of my Semester 1 project on class field theory. In the previous work, we made a rounded exposition of the fundamentals of class field theory but in order to preserve the document length the main proofs had to be skipped. We concentrate on filling in the gaps in this second installment. Due to the need to complete the arguments left open last semester and the need for applications this part of the project is a little longer than it should have been. It was not mentioned in the previous project but the class field theory we are studying here is global class field theory. There is such a thing as local class field theory in which we study the Abelian extensions of local fields (essentially fields that arise as completions of a number field with respect to places). Actually we touch on these ideas slightly in this project but never quite get to de_ning a local Artin map and looking at the local analogues of the main theorems of global class field theory. For those wanting to continue on to study local class field theory, consider Chapter 7 of [2] To start off this project we shall first restate the main de_nitions and theorems. This will be brief and those wanting to remind themselves of the details should consult my Semester 1 project. There will be very little motivation or technical results here since this was the purpose of the work done previously. We then set out to prove the main theorems of class field theory. With our present knowledge this would not be a simple task and we soon find that we first have to invent or discover new concepts such as the idele group and the corresponding idele class group. These are topological devices that take stock of all completions of a number eld at once. Such constructions will make the theory much easier to understand and formulate, whilst at the same time generalising the theory to all Abelian extensions. The cohomology of nite Abelian groups will be introduced and used alongside the idele theory to establish an important inequality. We use L-series in conjunction with the ideal theory to establish another important inequality. Combining the two inequalities will give a nice result that allows us to prove Artin reciprocity. In order to prove the existence theorem we resort to using Kummer n-extensions and the notion of a class eld. This middle chunk of the project will be quite technical but hopefully enjoyable and illuminating. [.]Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch.

  • Fretwell, Daniel

    Publicado por Grin Verlag, 2011

    ISBN 10: 3640969316 ISBN 13: 9783640969319

    Idioma: Inglés

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 6,81 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Daniel Fretwell

    Publicado por GRIN Verlag, 2011

    ISBN 10: 3640969316 ISBN 13: 9783640969319

    Idioma: Inglés

    Librería: preigu, Osnabrück, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 55,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 5 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Class Field Theory: Proofs and Applications | Daniel Fretwell | Taschenbuch | 52 S. | Englisch | 2011 | GRIN Verlag | EAN 9783640969319 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.

  • Daniel Fretwell

    Publicado por GRIN Verlag Aug 2011, 2011

    ISBN 10: 3640969316 ISBN 13: 9783640969319

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Number Theory, grade: Postgraduate, University of Sheffield, language: English, abstract: This document is a continuation of my Semester 1 project on class field theory. In the previous work, we made a rounded exposition of the fundamentals of class field theory but in order to preserve the document length the main proofs had to be skipped. We concentrate on filling in the gaps in this second installment. Due to the need to complete the arguments left open last semester and the need for applications this part of the project is a little longer than it should have been. It was not mentioned in the previous project but the class field theory we are studying here is global class field theory. There is such a thing as local class field theory in which we study the Abelian extensions of local fields (essentially fields that arise as completions of a number field with respect to places). Actually we touch on these ideas slightly in this project but never quite get to de_ning a local Artin map and looking at the local analogues of the main theorems of global class field theory. For those wanting to continue on to study local class field theory, consider Chapter 7 of [2] To start off this project we shall first restate the main de_nitions and theorems. This will be brief and those wanting to remind themselves of the details should consult my Semester 1 project. There will be very little motivation or technical results here since this was the purpose of the work done previously. We then set out to prove the main theorems of class field theory. With our present knowledge this would not be a simple task and we soon find that we first have to invent or discover new concepts such as the idele group and the corresponding idele class group. These are topological devices that take stock of all completions of a number eld at once. Such constructions will make the theory much easier to understand and formulate, whilst at the same time generalising the theory to all Abelian extensions. The cohomology of nite Abelian groups will be introduced and used alongside the idele theory to establish an important inequality. We use L-series in conjunction with the ideal theory to establish another important inequality. Combining the two inequalities will give a nice result that allows us to prove Artin reciprocity. In order to prove the existence theorem we resort to using Kummer n-extensions and the notion of a class eld. This middle chunk of the project will be quite technical but hopefully enjoyable and illuminating. [.] 52 pp. Englisch.