Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 59,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Apr 2023, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 43,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: preigu, Osnabrück, Alemania
EUR 40,00
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Building models for Auction systems | fraud detection system | Sivaji U | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206158608 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: Majestic Books, Hounslow, Reino Unido
EUR 61,08
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Apr 2023, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 43,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -we build online models for the auction fraud moderation and detection system designed for a major Asian online auction website. By empirical experiments on a realword online auction fraud detection data, we show that our proposed online probit model framework, which combines online feature selection, bounding coefficients from expert knowledge and multiple instance learning, can significantlyimprove over baselines and the human-tuned model. Note that this online modeling framework can be easily extended to many other applications, such as web spam detection, content optimization and so forth. Regarding to future work, one direction is to include the adjustment of the selection bias in the online model training process. It has been proven to be very effective for offline models . 60 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 62,34
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: moluna, Greven, Alemania
EUR 35,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: U Dr. SIVAJIDr.U.Sivaji is currently the Associate Professor of Information Technology at the Institute of Aeronautical Engineering, Dundigal, Hyderabad. His current research interests include software Engineering, Machine Learning ,.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 44,59
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - we build online models for the auction fraud moderation and detection system designed for a major Asian online auction website. By empirical experiments on a realword online auction fraud detection data, we show that our proposed online probit model framework, which combines online feature selection, bounding coefficients from expert knowledge and multiple instance learning, can significantlyimprove over baselines and the human-tuned model. Note that this online modeling framework can be easily extended to many other applications, such as web spam detection, content optimization and so forth. Regarding to future work, one direction is to include the adjustment of the selection bias in the online model training process. It has been proven to be very effective for offline models .