Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 41,06
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover. VIII, 122 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01238 3540156569 Sprache: Englisch Gewicht in Gramm: 550.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,04
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 67,82
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1985. Paperback. . . . . .
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 64,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,29
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 48,24
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 60,58
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 83,72
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1985. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 77,23
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1985 edition. 136 pages. 11.60x8.26x0.31 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 51,90
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 1985
ISBN 10: 3540156569 ISBN 13: 9783540156567
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 55,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, .k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir- k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984).For arbitrary K , the solution ij is not known and in some ca ses may not even exist. Aggregation processes are studied within a number of different fields—c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by irA k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 1985
ISBN 10: 3540156569 ISBN 13: 9783540156567
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 104,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, .k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir- k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984).For arbitrary K , the solution ij is not known and in some ca ses may not even exist. Aggregation processes are studied within a number of different fields—c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by irA k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer Berlin Heidelberg, 1985
ISBN 10: 3540156569 ISBN 13: 9783540156567
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. Introduction.- 2. Branching Processes Applied to the Aggregation of f-Valent Particles.- 3. Multitype Branching Processes.- 4. Aggregate Size Distribution on a Cell Surface.- 5. Gelation and Infinite-Sized Trees.- 6. Post-Gel Relations.- 7. Conclusions a.