Idioma: Inglés
Publicado por Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 71,95
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 92.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Sep 2011, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 49,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.Books on Demand GmbH, Überseering 33, 22297 Hamburg 92 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 113,38
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Sep 2011, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 49,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results. 92 pp. Englisch.
Idioma: Inglés
Publicado por Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: Majestic Books, Hounslow, Reino Unido
EUR 75,29
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 92 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam.
Idioma: Inglés
Publicado por Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 77,39
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 92.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: moluna, Greven, Alemania
EUR 41,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aijun YangDr. Yang Aijun: Assiatant Professor and CFA, School of Finance, Nanjing Audit University Ph.D, The Chinese University of Hong Kong. Yang s research interests include Stock Return Predictability, Portfolio Selection, Financ.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 49,00
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Librería: preigu, Osnabrück, Alemania
EUR 43,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Bayesian Variable Selection for High Dimensional Data Analysis | methods and Applications | Yang Aijun | Taschenbuch | 92 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783846505717 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand.