Publicado por Now Publishers Inc 2015-11, 2015
ISBN 10: 1680830880 ISBN 13: 9781680830880
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 86,51
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
EUR 116,27
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 146 pages. 9.20x6.10x0.30 inches. In Stock.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 106,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 216.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 127,51
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms.Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class.Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.