Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
EUR 25,12
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: clickgoodwillbooks, Indianapolis, IN, Estados Unidos de America
EUR 22,68
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: acceptable. Used - Acceptable: All pages and the cover are intact, but shrink wrap, dust covers, or boxed set case may be missing. Pages may include limited notes, highlighting, or minor water damage but the text is readable. Item may be missing bundled media.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
EUR 35,53
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 48,25
Cantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: INDOO, Avenel, NJ, Estados Unidos de America
EUR 53,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread copy in mint condition.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: INDOO, Avenel, NJ, Estados Unidos de America
EUR 53,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 55,46
Cantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, US, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 62,41
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility.This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 51,73
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. This book advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. Series: The Econometric and Tinbergen Institutes Lectures. Num Pages: 224 pages, 66 line illus. BIC Classification: PBTB. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 151 x 217 x 22. Weight in Grams: 412. . 2014. Hardcover. . . . .
Publicado por Princeton University Press, US, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 68,70
Cantidad disponible: 14 disponibles
Añadir al carritoHardback. Condición: New. This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility.This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.
Publicado por Princeton University Press 2014-04-27, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 54,23
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 63,65
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. This book advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. Series: The Econometric and Tinbergen Institutes Lectures. Num Pages: 224 pages, 66 line illus. BIC Classification: PBTB. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 151 x 217 x 22. Weight in Grams: 412. . 2014. Hardcover. . . . . Books ship from the US and Ireland.
Publicado por Princeton University Press, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 55,47
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 443.
EUR 52,17
Cantidad disponible: 2 disponibles
Añadir al carritoGebunden. Condición: New. Reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. This book advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible d.
Publicado por Princeton University Press, US, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 70,57
Cantidad disponible: 14 disponibles
Añadir al carritoHardback. Condición: New. This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility.This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.
Publicado por Princeton University Press Apr 2014, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 63,06
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - 'Peter Rossi, an expert on Bayesian analysis, presents a crisp introduction to an increasingly important class of models and their use in econometric applications.'--Andrew Gelman, Columbia University.
Publicado por Princeton University Press, US, 2014
ISBN 10: 0691145326 ISBN 13: 9780691145327
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 56,09
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility.This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.