Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido
EUR 19,17
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Librería: Goodwill of Colorado, COLORADO SPRINGS, CO, Estados Unidos de America
EUR 29,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. This item is in overall good condition. Covers and dust jackets are intact but may have minor wear including slight curls or bends to corners as well as cosmetic blemishes including stickers. Pages are intact but may have minor highlighting/ writing. Binding is intact; however, spine may have slight wear overall. Digital codes may not be included and have not been tested to be redeemable and/or active. Minor shelf wear overall. Please note that all items are donated goods and are in used condition. Orders shipped Monday through Friday! Your purchase helps put people to work and learn life skills to reach their full potential. Orders shipped Monday through Friday. Your purchase helps put people to work and learn life skills to reach their full potential. Thank you!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 45,60
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 44,36
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Packt Publishing 12/26/2018, 2018
ISBN 10: 1789341655 ISBN 13: 9781789341652
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 48,99
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Bayesian Analysis with Python - Second Edition 1.35. Book.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 49,74
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,88
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 54,15
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoSoftcover. Condición: New. Special order direct from the distributor.
Publicado por Packt Publishing 2018-12, 2018
ISBN 10: 1789341655 ISBN 13: 9781789341652
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 45,39
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 50,65
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 48,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 55,26
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 69,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Bayesian modeling with PyMC3 and exploratory analysis of Bayesian models with ArviZKey FeaturesA step-by-step guide to conduct Bayesian data analyses using PyMC3 and ArviZA modern, practical and computational approach to Bayesian statistical modelingA tutorial for Bayesian analysis and best practices with the help of sample problems and practice exercises.Book DescriptionThe second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models.The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others.By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.What you will learnBuild probabilistic models using the Python library PyMC3Analyze probabilistic models with the help of ArviZAcquire the skills required to sanity check models and modify them if necessaryUnderstand the advantages and caveats of hierarchical modelsFind out how different models can be used to answer different data analysis questionsCompare models and choose between alternative onesDiscover how different models are unified from a probabilistic perspectiveThink probabilistically and benefit from the flexibility of the Bayesian frameworkWho this book is forIf you are a student, data scientist, researcher, or a developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory so no previous statistical knowledge is required, although some experience in using Python and NumPy is expected.
Librería: moluna, Greven, Alemania
EUR 59,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Bayesian inference uses probability distributions and Bayes theorem to build flexible models. The book uses PyMC3 to abstract all the mathematical and computational details from this process allowing readers to solve a wide range of problems in data scienc.