Librería: Antiquariat Thomas Nonnenmacher, Freiburg, Alemania
EUR 34,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover/Pappeinband. Condición: Sehr gut. 222 Seiten. Sehr gut erhalten. 9783319333786 Sprache: Englisch Gewicht in Gramm: 1200.
Publicado por Springer International Publishing, 2016
ISBN 10: 331933378X ISBN 13: 9783319333786
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 36,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 240 | Sprache: Englisch | Produktart: Sonstiges.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,52
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,53
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 60,29
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing, 2018
ISBN 10: 3319814990 ISBN 13: 9783319814995
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
Publicado por Springer International Publishing, 2016
ISBN 10: 331933378X ISBN 13: 9783319333786
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 68,01
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 69,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,42
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 237.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 68,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 71,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Switzerland, Springer International Publishing Dez 2016, 2016
ISBN 10: 331933378X ISBN 13: 9783319333786
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 79,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 9.50x6.50x0.75 inches. In Stock.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 70,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 98,86
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 129,35
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing Jul 2018, 2018
ISBN 10: 3319814990 ISBN 13: 9783319814995
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields. 240 pp. Englisch.
Publicado por Springer International Publishing Dez 2016, 2016
ISBN 10: 331933378X ISBN 13: 9783319333786
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields. 240 pp. Englisch.
Publicado por Springer International Publishing, 2018
ISBN 10: 3319814990 ISBN 13: 9783319814995
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Combines tools from potential theory, large deviations, Schwinger-Dyson equations, and Riemann-Hilbert techniques, and presents them in the same frameworkDerives all concepts and results from scratch and with a sufficient level of detail so as to .
Publicado por Springer International Publishing, 2016
ISBN 10: 331933378X ISBN 13: 9783319333786
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Combines tools from potential theory, large deviations, Schwinger-Dyson equations, and Riemann-Hilbert techniques, and presents them in the same frameworkDerives all concepts and results from scratch and with a sufficient level of detail so as to .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 76,80
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 237.
Publicado por Springer International Publishing, Springer Nature Switzerland Jul 2018, 2018
ISBN 10: 3319814990 ISBN 13: 9783319814995
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,10
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 237.