Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 23,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cham, Springer International Publishing., 2021
ISBN 10: 3030752194 ISBN 13: 9783030752194
Idioma: Inglés
Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
Original o primera edición
EUR 20,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carrito1st ed. 2021. VIII, 268 p. Hardcover. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Internet of Things, Technology, Communications and Computing. Sprache: Englisch.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 62,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1041019262 ISBN 13: 9781041019268
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 69,33
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Biomedical engineering is undergoing a transformation because of AI, which is allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering examines the salient characteristics of AI in biomedical engineering, highlighting its practical applications and new directions. Highlights of the book include:Genome sequence and visualizationThe role of AI and cloud in detection of diseasesNature-inspired algorithms for disease detectionFrameworks for disease classificationWith a focus on designing AI techniques for disease detection, the book explores the role of AI in biomedical engineering. It discusses how machine learning (ML) and deep learning (DL) are at the heart of AI applications in biomedical engineering. ML algorithms, particularly those based on neural networks, enable computers to learn from large datasets, identify patterns, and make predictions or decisions without explicit programming, and implementing ML algorithms is a focus of the book. Another focus is on DL, a subset of ML, and how it uses multi-layered neural networks to achieve high accuracy in such complex tasks as image and speech recognition. Biomedical engineering generates massive amounts of data from medical imaging, genomic sequencing, wearable devices, electronic health records (EHR), and other sources. This book also discusses AI-driven big data analytics, which allows researchers and clinicians to derive from data meaningful insights, aiding in early disease detection, personalized treatment plans, and patient monitoring. Biomedical engineering is undergoing a transformation due to AI and cloud computing, which are allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. This work examines these two computing paradigms in biomedical engineering, highlighting practical applications and new directions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 68,50
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 69,00
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 65,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 62,78
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor and Francis Ltd, GB, 2025
ISBN 10: 1041019262 ISBN 13: 9781041019268
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 83,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Biomedical engineering is undergoing a transformation because of AI, which is allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering examines the salient characteristics of AI in biomedical engineering, highlighting its practical applications and new directions. Highlights of the book include:Genome sequence and visualizationThe role of AI and cloud in detection of diseasesNature-inspired algorithms for disease detectionFrameworks for disease classificationWith a focus on designing AI techniques for disease detection, the book explores the role of AI in biomedical engineering. It discusses how machine learning (ML) and deep learning (DL) are at the heart of AI applications in biomedical engineering. ML algorithms, particularly those based on neural networks, enable computers to learn from large datasets, identify patterns, and make predictions or decisions without explicit programming, and implementing ML algorithms is a focus of the book. Another focus is on DL, a subset of ML, and how it uses multi-layered neural networks to achieve high accuracy in such complex tasks as image and speech recognition. Biomedical engineering generates massive amounts of data from medical imaging, genomic sequencing, wearable devices, electronic health records (EHR), and other sources. This book also discusses AI-driven big data analytics, which allows researchers and clinicians to derive from data meaningful insights, aiding in early disease detection, personalized treatment plans, and patient monitoring.
Publicado por Taylor and Francis Ltd, GB, 2025
ISBN 10: 1041019262 ISBN 13: 9781041019268
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 85,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Biomedical engineering is undergoing a transformation because of AI, which is allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering examines the salient characteristics of AI in biomedical engineering, highlighting its practical applications and new directions. Highlights of the book include:Genome sequence and visualizationThe role of AI and cloud in detection of diseasesNature-inspired algorithms for disease detectionFrameworks for disease classificationWith a focus on designing AI techniques for disease detection, the book explores the role of AI in biomedical engineering. It discusses how machine learning (ML) and deep learning (DL) are at the heart of AI applications in biomedical engineering. ML algorithms, particularly those based on neural networks, enable computers to learn from large datasets, identify patterns, and make predictions or decisions without explicit programming, and implementing ML algorithms is a focus of the book. Another focus is on DL, a subset of ML, and how it uses multi-layered neural networks to achieve high accuracy in such complex tasks as image and speech recognition. Biomedical engineering generates massive amounts of data from medical imaging, genomic sequencing, wearable devices, electronic health records (EHR), and other sources. This book also discusses AI-driven big data analytics, which allows researchers and clinicians to derive from data meaningful insights, aiding in early disease detection, personalized treatment plans, and patient monitoring.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 74,17
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 84,53
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 69,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 76,17
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 264 pages. 9.18x6.12 inches. In Stock.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,53
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 74,65
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 3 working days. 460.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 92,15
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 92,59
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1041019262 ISBN 13: 9781041019268
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 62,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Biomedical engineering is undergoing a transformation because of AI, which is allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering examines the salient characteristics of AI in biomedical engineering, highlighting its practical applications and new directions. Highlights of the book include:Genome sequence and visualizationThe role of AI and cloud in detection of diseasesNature-inspired algorithms for disease detectionFrameworks for disease classificationWith a focus on designing AI techniques for disease detection, the book explores the role of AI in biomedical engineering. It discusses how machine learning (ML) and deep learning (DL) are at the heart of AI applications in biomedical engineering. ML algorithms, particularly those based on neural networks, enable computers to learn from large datasets, identify patterns, and make predictions or decisions without explicit programming, and implementing ML algorithms is a focus of the book. Another focus is on DL, a subset of ML, and how it uses multi-layered neural networks to achieve high accuracy in such complex tasks as image and speech recognition. Biomedical engineering generates massive amounts of data from medical imaging, genomic sequencing, wearable devices, electronic health records (EHR), and other sources. This book also discusses AI-driven big data analytics, which allows researchers and clinicians to derive from data meaningful insights, aiding in early disease detection, personalized treatment plans, and patient monitoring. Biomedical engineering is undergoing a transformation due to AI and cloud computing, which are allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. This work examines these two computing paradigms in biomedical engineering, highlighting practical applications and new directions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 83,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 83,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 92,65
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 99,88
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206740404 ISBN 13: 9786206740407
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 101,14
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 91,37
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 264 pages. 9.18x6.12x9.21 inches. In Stock.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 106,22
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 93,80
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1041019262 ISBN 13: 9781041019268
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 70,01
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Biomedical engineering is undergoing a transformation because of AI, which is allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering examines the salient characteristics of AI in biomedical engineering, highlighting its practical applications and new directions. Highlights of the book include:Genome sequence and visualizationThe role of AI and cloud in detection of diseasesNature-inspired algorithms for disease detectionFrameworks for disease classificationWith a focus on designing AI techniques for disease detection, the book explores the role of AI in biomedical engineering. It discusses how machine learning (ML) and deep learning (DL) are at the heart of AI applications in biomedical engineering. ML algorithms, particularly those based on neural networks, enable computers to learn from large datasets, identify patterns, and make predictions or decisions without explicit programming, and implementing ML algorithms is a focus of the book. Another focus is on DL, a subset of ML, and how it uses multi-layered neural networks to achieve high accuracy in such complex tasks as image and speech recognition. Biomedical engineering generates massive amounts of data from medical imaging, genomic sequencing, wearable devices, electronic health records (EHR), and other sources. This book also discusses AI-driven big data analytics, which allows researchers and clinicians to derive from data meaningful insights, aiding in early disease detection, personalized treatment plans, and patient monitoring. Biomedical engineering is undergoing a transformation due to AI and cloud computing, which are allowing creative solutions that enhance patient outcomes, diagnosis, treatment planning, and healthcare delivery. This work examines these two computing paradigms in biomedical engineering, highlighting practical applications and new directions. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por China Water Conservancy and Hydropower Press, 2022
ISBN 10: 751709985X ISBN 13: 9787517099857
Idioma: Inglés
Librería: liu xing, Nanjing, JS, China
EUR 102,24
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. Paperback.Pub Date:2022-03-01 Pages:418 Publisher:China Water Resources and Hydropower Press Deep learning is a subset of machine learning based on multi-layer neural networks. which can solve particularly difficult and difficult tasks in fields such as natural language processing and image classification. massive problem. Apache Spark Deep Learning in Action breaks down the complexity of the technical and analytical parts and the speed at which deep learning solutions can be implemented on A.