Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 29,87
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 34,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 33,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 36,12
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 38,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 54,47
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Implement deep learning applications using TensorFlow while learning the why through in-depth conceptual explanations. Youll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpyothers are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers. You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, youll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, youll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 49,34
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. Paperback. . . . . .
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 44,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 54,72
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 295 pages. 9.00x6.00x0.70 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 60,80
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. Paperback. . . . . . Books ship from the US and Ireland.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 55,59
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 63,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 82,47
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. edition NO-PA16APR2015-KAP.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 78,74
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Implement deep learning applications using TensorFlow while learning the why through in-depth conceptual explanations. Youll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpyothers are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers. You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, youll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, youll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Apress, Apress Nov 2020, 2020
ISBN 10: 1484265122 ISBN 13: 9781484265123
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 58,84
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Implement deep learning applications using TensorFlow while learning the ¿why¿ through in-depth conceptual explanations.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 316 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 50,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Applied Neural Networks with TensorFlow 2 | API Oriented Deep Learning with Python | Orhan Gazi Yalç¿n | Taschenbuch | xix | Englisch | 2020 | Apress | EAN 9781484265123 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 58,84
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. 316 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 86,29
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 87,10
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,97
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs.