Publicado por Orange Education Pvt Ltd, 2024
ISBN 10: 8197081964 ISBN 13: 9788197081965
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 36,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 164,80
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 175,37
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 185,55
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 189,22
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 191,99
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 205,91
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Elsevier Science & Technology, San Francisco, 2025
ISBN 10: 0443296545 ISBN 13: 9780443296543
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 165,17
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Use Cases delineates how graph data science significantly empowers the application of data science. The book discusses the emerging paradigm of graph data science in detail along with its practical research and real-world applications. Readers will be enriched with the knowledge of graph data science, graph analytics, algorithms, databases, platforms, and use cases across a variety of research and topics and applications. This book also presents how graphs are used as a programming language, especially demonstrating how Sleptsov Net Computing can contribute as an entirely graphical concurrent processing language for supercomputers. Graph data science is emerging as an expressive and illustrative data structure for optimally representing a variety of data types and their insightful relationships. These data structures include graph query languages, databases, algorithms, and platforms. From here, powerful analytics methods and machine learning/deep learning (ML/DL) algorithms are quickly evolving to analyze and make sense out of graph data. As a result, ground-breaking use cases across scientific research topics and industry verticals are being developed using graph data representation and manipulation. A wide range of complex business and scientific research requirements are efficiently represented and solved through graph data analysis, and Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Graph Data Science gives readers both the conceptual foundations and technical methods for applying these powerful techniques. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 221,77
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 220,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Elsevier Science & Technology Mai 2025, 2025
ISBN 10: 0443296545 ISBN 13: 9780443296543
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 291,46
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Use Cases delineates how graph data science significantly empowers the application of data science. The book discusses the emerging paradigm of graph data science in detail along with its practical research and real-world applications. Readers will be enriched with the knowledge of graph data science, graph analytics, algorithms, databases, platforms, and use cases across a variety of research and topics and applications. This book also presents how graphs are used as a programming language, especially demonstrating how Sleptsov Net Computing can contribute as an entirely graphical concurrent processing language for supercomputers. Graph data science is emerging as an expressive and illustrative data structure for optimally representing a variety of data types and their insightful relationships. These data structures include graph query languages, databases, algorithms, and platforms. From here, powerful analytics methods and machine learning/deep learning (ML/DL) algorithms are quickly evolving to analyze and make sense out of graph data. As a result, ground-breaking use cases across scientific research topics and industry verticals are being developed using graph data representation and manipulation. A wide range of complex business and scientific research requirements are efficiently represented and solved through graph data analysis, and Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Graph Data Science gives readers both the conceptual foundations and technical methods for applying these powerful techniques.
Publicado por Morgan Kaufmann Publishers In, 2025
ISBN 10: 0443296545 ISBN 13: 9780443296543
Idioma: Inglés
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 148,78
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: new. Questo è un articolo print on demand.
Publicado por Elsevier Science & Technology, San Francisco, 2025
ISBN 10: 0443296545 ISBN 13: 9780443296543
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 161,53
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Use Cases delineates how graph data science significantly empowers the application of data science. The book discusses the emerging paradigm of graph data science in detail along with its practical research and real-world applications. Readers will be enriched with the knowledge of graph data science, graph analytics, algorithms, databases, platforms, and use cases across a variety of research and topics and applications. This book also presents how graphs are used as a programming language, especially demonstrating how Sleptsov Net Computing can contribute as an entirely graphical concurrent processing language for supercomputers. Graph data science is emerging as an expressive and illustrative data structure for optimally representing a variety of data types and their insightful relationships. These data structures include graph query languages, databases, algorithms, and platforms. From here, powerful analytics methods and machine learning/deep learning (ML/DL) algorithms are quickly evolving to analyze and make sense out of graph data. As a result, ground-breaking use cases across scientific research topics and industry verticals are being developed using graph data representation and manipulation. A wide range of complex business and scientific research requirements are efficiently represented and solved through graph data analysis, and Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Graph Data Science gives readers both the conceptual foundations and technical methods for applying these powerful techniques. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 162,27
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 250 pages. 9.25x7.50x10.50 inches. In Stock. This item is printed on demand.