Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 55,60
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Seiten: 224 | Sprache: Englisch | Produktart: Bücher.
Publicado por LAP LAMBERT Academic Publishing Jan 2012, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The study done in this book was designed as a focused preliminary exploration into the power of the genetic algorithm and fuzzy logic system to the prediction of cancer survival, The results of the experiments were very positive, comparing the outcome of the GA model with that of FL it shows the robustness of the GA model as prediction system.The two principal designs indicate that the use of genetic algorithms and fuzzy logic in NPC is definitely a fruitful endeavour. The results would suggest that genetic algorithms as standalone classifier models are better (based on the system designed in this research) for this sort of task than a fuzzy logic model.Books on Demand GmbH, Überseering 33, 22297 Hamburg 224 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 151,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 63,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: F. Baker OrasDr.Oras F. Baker is the head of Research and Industrial Collaboration Dept in UCSI University and currently he is a faculty member in UKH University. He obtained his PhD in Artificial Intelligence from the University of .
Publicado por LAP LAMBERT Academic Publishing Jan 2012, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The study done in this book was designed as a focused preliminary exploration into the power of the genetic algorithm and fuzzy logic system to the prediction of cancer survival, The results of the experiments were very positive, comparing the outcome of the GA model with that of FL it shows the robustness of the GA model as prediction system.The two principal designs indicate that the use of genetic algorithms and fuzzy logic in NPC is definitely a fruitful endeavour. The results would suggest that genetic algorithms as standalone classifier models are better (based on the system designed in this research) for this sort of task than a fuzzy logic model. 224 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3847319663 ISBN 13: 9783847319665
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The study done in this book was designed as a focused preliminary exploration into the power of the genetic algorithm and fuzzy logic system to the prediction of cancer survival, The results of the experiments were very positive, comparing the outcome of the GA model with that of FL it shows the robustness of the GA model as prediction system.The two principal designs indicate that the use of genetic algorithms and fuzzy logic in NPC is definitely a fruitful endeavour. The results would suggest that genetic algorithms as standalone classifier models are better (based on the system designed in this research) for this sort of task than a fuzzy logic model.