Publicado por LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 84,68
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 50,66
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Patel NileshHe is presently Assistant Professor, Department of Science & Humanities, at Shankersinh Vaghela Bapu Institute of Technology. He has over 11 years of Teaching Experience at various level in Engineering. He is famous among.
Publicado por LAP LAMBERT Academic Publishing Feb 2021, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 61,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The study of differential equations is an extensive field in pure and applied Mathematics. differential equations play an important role in every physical or technical process. Differential equations like those wont to solve real-life issues might not be solvable analytically or terribly tough to possess closed-form solutions are often approximated by numerical methods. During the last few years, piecewise polynomial approximations have become very important in engineering applications. The most popular of such approximating functions are spline functions. The various features of the Spline collocation technique enhance the applicability in the field of numerical analysis to partial differential equations. The present work deals with the use of Spline collocation method to various types of linear as well as non-linear Partial Differential Equations (PDEs) under the different set of boundary conditions. LinearPDEs are solved using Spline explicit and implicit schemes while non-linear PDEs are handled withHofp-Cole transformation and Orlowski and Soczyk transformation (OST) to apply Spline collocation method. 128 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 62,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The study of differential equations is an extensive field in pure and applied Mathematics. differential equations play an important role in every physical or technical process. Differential equations like those wont to solve real-life issues might not be solvable analytically or terribly tough to possess closed-form solutions are often approximated by numerical methods. During the last few years, piecewise polynomial approximations have become very important in engineering applications. The most popular of such approximating functions are spline functions. The various features of the Spline collocation technique enhance the applicability in the field of numerical analysis to partial differential equations. The present work deals with the use of Spline collocation method to various types of linear as well as non-linear Partial Differential Equations (PDEs) under the different set of boundary conditions. LinearPDEs are solved using Spline explicit and implicit schemes while non-linear PDEs are handled withHofp-Cole transformation and Orlowski and Soczyk transformation (OST) to apply Spline collocation method.
Publicado por LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 86,35
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por LAP LAMBERT Academic Publishing Feb 2021, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 61,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The study of differential equations is an extensive field in pure and applied Mathematics. differential equations play an important role in every physical or technical process. Differential equations like those wont to solve real-life issues might not be solvable analytically or terribly tough to possess closed-form solutions are often approximated by numerical methods. During the last few years, piecewise polynomial approximations have become very important in engineering applications. The most popular of such approximating functions are spline functions. The various features of the Spline collocation technique enhance the applicability in the field of numerical analysis to partial differential equations. The present work deals with the use of Spline collocation method to various types of linear as well as non-linear Partial Differential Equations (PDEs) under the different set of boundary conditions. LinearPDEs are solved using Spline explicit and implicit schemes while non-linear PDEs are handled withHofp-Cole transformation and Orlowski and Soczyk transformation (OST) to apply Spline collocation method.Books on Demand GmbH, Überseering 33, 22297 Hamburg 128 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203303925 ISBN 13: 9786203303926
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 89,94
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.