Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 98,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, 2020
ISBN 10: 3030336662 ISBN 13: 9783030336660
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today's Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;Presents the design of a changepoint-based anomaly detector;Includes Hierarchical Symbol-based Health-Status Analysis;Describes an iterative, self-learning procedure for assessing the health status.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 90,98
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 117,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, 2019
ISBN 10: 3030336638 ISBN 13: 9783030336639
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today's Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;Presents the design of a changepoint-based anomaly detector;Includes Hierarchical Symbol-based Health-Status Analysis;Describes an iterative, self-learning procedure for assessing the health status.
Publicado por Springer International Publishing, Springer International Publishing Dez 2020, 2020
ISBN 10: 3030336662 ISBN 13: 9783030336660
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today¿s Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 128,68
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 121,19
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 126,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing Dez 2019, 2019
ISBN 10: 3030336638 ISBN 13: 9783030336639
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today¿s Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 127,15
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 129,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 138,26
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 164 pages. 9.25x6.10x0.39 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 94,47
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 153,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 161 pages. 9.25x6.10x0.63 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 104,05
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 149,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Publicado por Springer International Publishing, 2020
ISBN 10: 3030336662 ISBN 13: 9783030336660
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 77,17
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Enables Accurate Anomaly Detection Using Correlation-Based Time-Series AnalysisPresents the design of a changepoint-based anomaly detectorIncludes Hierarchical Symbol-based Health-Status AnalysisDescribes an iterative, self-learning .
Publicado por Springer International Publishing Dez 2020, 2020
ISBN 10: 3030336662 ISBN 13: 9783030336660
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 90,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today's Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;Presents the design of a changepoint-based anomaly detector;Includes Hierarchical Symbol-based Health-Status Analysis;Describes an iterative, self-learning procedure for assessing the health status. 164 pp. Englisch.
Publicado por Springer International Publishing, 2019
ISBN 10: 3030336638 ISBN 13: 9783030336639
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 89,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Enables Accurate Anomaly Detection Using Correlation-Based Time-Series AnalysisPresents the design of a changepoint-based anomaly detectorIncludes Hierarchical Symbol-based Health-Status AnalysisDescribes an iterative, self-learning .
Publicado por Springer International Publishing Dez 2019, 2019
ISBN 10: 3030336638 ISBN 13: 9783030336639
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today's Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;Presents the design of a changepoint-based anomaly detector;Includes Hierarchical Symbol-based Health-Status Analysis;Describes an iterative, self-learning procedure for assessing the health status. 164 pp. Englisch.