Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
EUR 19,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoXIV, 202 p. Hardcover. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Advances in Information Security, 86. Sprache: Englisch.
Publicado por Springer International Publishing, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 16,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
EUR 127,29
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 171,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Nature Switzerland AG, Cham, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 188,41
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 184,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 170,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 186,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 185,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 177,53
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 195,88
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 209,50
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Switzerland AG, Cham, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 210,38
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 196,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 228,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 228,94
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2021 edition NO-PA16APR2015-KAP.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 239,66
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer Nature Switzerland Jul 2022, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch.
Publicado por Springer International Publishing, Springer International Publishing Jul 2021, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
Publicado por Springer International Publishing, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 272,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 216 pages. 9.25x6.10x0.71 inches. In Stock.
Publicado por Springer Nature Switzerland AG, Cham, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 319,41
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer Nature Switzerland AG, Cham, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 322,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 153,73
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus (2) the resiliency to common obfusc.
Publicado por Springer International Publishing, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 153,73
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents android malware detection framework using machine learning techniques, as well as static and dynamic analysis featuresIntroduces fingerprinting and clustering system of android malware using the community detecti.
Publicado por Springer International Publishing Jul 2022, 2022
ISBN 10: 3030746666 ISBN 13: 9783030746667
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. 216 pp. Englisch.
Publicado por Springer International Publishing Jul 2021, 2021
ISBN 10: 3030746631 ISBN 13: 9783030746636
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures.First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well. 216 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 244,45
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 254,80
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.