EUR 54,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 50,82
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 134,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.53.
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
EUR 131,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. In shrink wrap. Looks like an interesting title!
EUR 178,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 178,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 178,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 174,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 178,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 178,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, 2023
ISBN 10: 3031066510 ISBN 13: 9783031066511
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.
Publicado por Springer International Publishing, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 181,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 186,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 195,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 195,67
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 197,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 197,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 197,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 197,75
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 197,75
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 197,80
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 209,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 209,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 221,88
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 2nd ed. 2022 edition NO-PA16APR2015-KAP.
EUR 209,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. About conformal prediction, which is a valuable new method of machine learningConformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accurac.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 185,65
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
EUR 222,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 3031066510 ISBN 13: 9783031066511
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 275,30
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2nd edition. 502 pages. 9.25x6.10x1.01 inches. In Stock.
EUR 277,33
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd edition. 502 pages. 9.25x6.10x1.34 inches. In Stock.
Publicado por Springer, Berlin, Springer US, Springer, 2005
ISBN 10: 0387001522 ISBN 13: 9780387001524
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 293,48
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.