Librería: SpringBooks, Berlin, Alemania
Original o primera edición
EUR 26,18
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. 1. Auflage. unread, some shelfwear.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 156,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 156,88
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 146,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 146,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 189,13
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 192,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 192,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 203,91
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2020 edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer Verlag, Singapore, SG, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 211,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2020 ed. This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Mai 2020, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
EUR 201,96
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. New. book.
Idioma: Inglés
Publicado por Springer Nature Singapore, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 165,03
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 166,62
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Idioma: Inglés
Publicado por Springer-Nature New York Inc, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Librería: Revaluation Books, Exeter, Reino Unido
EUR 230,58
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 299 pages. 9.25x6.10x0.63 inches. In Stock.
Idioma: Inglés
Publicado por Springer-Nature New York Inc, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: Revaluation Books, Exeter, Reino Unido
EUR 233,06
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 275 pages. 9.75x6.50x0.75 inches. In Stock.
Idioma: Inglés
Publicado por Springer Verlag, Singapore, SG, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: Rarewaves.com UK, London, Reino Unido
EUR 201,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2020 ed. This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Idioma: Chino
Publicado por Machinery Industry Press, 2021
ISBN 10: 7111685008 ISBN 13: 9787111685005
Librería: liu xing, Nanjing, JS, China
EUR 124,41
Cantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New. Paperback. Pub Date: 2021-07-01 Pages: 264 Language: Chinese Publisher: Machinery Industry Press. Machine learning is a discipline about building predictive or descriptive models from data to improve machine problem-solving capabilities.?After the model is established. an appropriate optimization algorithm is needed to solve the parameters of the model. Therefore. the optimization algorithm is an important part of machine learning.?However. traditional optimization algorithms are not complete.
Idioma: Inglés
Publicado por Springer Nature Singapore Mai 2021, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. 275 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore Mai 2020, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. 300 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 136,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first monograph on accelerated first-order optimization algorithms used in machine learningIncludes forewords by Michael I. Jordan, Zongben Xu, and Zhi-Quan Luo, and written by experts on machine learning and optimization.
Idioma: Inglés
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Librería: moluna, Greven, Alemania
EUR 137,26
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order opt.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 197,93
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: preigu, Osnabrück, Alemania
EUR 138,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Accelerated Optimization for Machine Learning | First-Order Algorithms | Zhouchen Lin (u. a.) | Taschenbuch | xxiv | Englisch | 2021 | Springer Singapore | EAN 9789811529122 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: preigu, Osnabrück, Alemania
EUR 141,30
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Accelerated Optimization for Machine Learning | First-Order Algorithms | Zhouchen Lin (u. a.) | Buch | xxiv | Englisch | 2020 | Springer Singapore | EAN 9789811529092 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 202,05
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 212,80
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 218,55
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.