Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 182,89
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 184,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 200,26
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 206,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 204,77
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Buchpark, Trebbin, Alemania
EUR 103,48
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field.The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents active learning for UDA, which combines domain adaptation and active learning to reduce the amount of labeled data needed for adaptation.This book is suitable for researchers, graduate students, and practitioners who are interested in UDA and its applications in various fields, primarily in computer vision. The chapters are authored by leading experts in the field and provide a comprehensive and in-depth analysis of the current UDA methods and new directions for future research. With its broad coverage and cutting-edge research, this book is a valuable resource for anyone looking to advance their knowledge of UDA.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 209,78
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 226,50
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 2024th edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Apr 2024, 2024
ISBN 10: 9819710243 ISBN 13: 9789819710249
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field.The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents active learning for UDA, which combines domain adaptation and active learning to reduce the amount of labeled data needed for adaptation.This book is suitable for researchers, graduate students, and practitioners who are interested in UDA and its applications in various fields, primarily in computer vision. The chapters are authored by leading experts in the field and provide a comprehensive and in-depth analysis of the current UDA methods and new directions for future research. With its broad coverage and cutting-edge research, this book is a valuable resource for anyone looking to advance their knowledge of UDA.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2024
ISBN 10: 9819710243 ISBN 13: 9789819710249
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 185,68
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field.The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents active learning for UDA, which combines domain adaptation and active learning to reduce the amount of labeled data needed for adaptation.This book is suitable for researchers, graduate students, and practitioners who are interested in UDA and its applications in various fields, primarily in computer vision. The chapters are authored by leading experts in the field and provide a comprehensive and in-depth analysis of the current UDA methods and new directions for future research. With its broad coverage and cutting-edge research, this book is a valuable resource for anyone looking to advance their knowledge of UDA.
Idioma: Inglés
Publicado por Springer-Nature New York Inc, 2024
ISBN 10: 9819710243 ISBN 13: 9789819710249
Librería: Revaluation Books, Exeter, Reino Unido
EUR 270,88
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 239 pages. 9.25x6.10x9.21 inches. In Stock.
Idioma: Inglés
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2024
ISBN 10: 9819710243 ISBN 13: 9789819710249
Librería: moluna, Greven, Alemania
EUR 153,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention f.
Idioma: Inglés
Publicado por Springer Nature Singapore Mai 2024, 2024
ISBN 10: 9819710243 ISBN 13: 9789819710249
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field.The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents active learning for UDA, which combines domain adaptation and active learning to reduce the amount of labeled data needed for adaptation.This book is suitable for researchers, graduate students, and practitioners who are interested in UDA and its applications in various fields, primarily in computer vision. The chapters are authored by leading experts in the field and provide a comprehensive and in-depth analysis of the current UDA methods and new directions for future research. With its broad coverage and cutting-edge research, this book is a valuable resource for anyone looking to advance their knowledge of UDA. 223 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 159,40
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Unsupervised Domain Adaptation | Recent Advances and Future Perspectives | Jingjing Li (u. a.) | Buch | xvi | Englisch | 2024 | Springer Singapore | EAN 9789819710249 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 238,03
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 245,43
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.