Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 171,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 183,90
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 227,57
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2021 edition NO-PA16APR2015-KAP.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 228,18
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. Paperback. . . . . .
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Feb 2022, 2022
ISBN 10: 9813344229 ISBN 13: 9789813344228
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2022
ISBN 10: 9813344229 ISBN 13: 9789813344228
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 186,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 285,32
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. Paperback. . . . . . Books ship from the US and Ireland.
Idioma: Inglés
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2022
ISBN 10: 9813344229 ISBN 13: 9789813344228
Librería: moluna, Greven, Alemania
EUR 153,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to character.
Idioma: Inglés
Publicado por Springer Nature Singapore Feb 2022, 2022
ISBN 10: 9813344229 ISBN 13: 9789813344228
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. 220 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 159,40
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Deep Learning for Hyperspectral Image Analysis and Classification | Linmi Tao (u. a.) | Taschenbuch | xii | Englisch | 2022 | Springer | EAN 9789813344228 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 238,41
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 243,20
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.