Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 175,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Verlag, Singapore, Singapore, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 178,13
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 171,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 184,24
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 171,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 195,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 208,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 197,46
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 219,94
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2021 edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Feb 2021, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 188,08
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
Idioma: Inglés
Publicado por Springer Verlag, Singapore, Singapore, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 248,57
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 272,11
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 219 pages. 9.25x6.10x0.56 inches. In Stock.
Librería: moluna, Greven, Alemania
EUR 153,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proposes adaptive-boundary adjustment-based noise detection and group-wise band categorization with unsupervised spectral-spatial adaptive band-noise factor-based formulationPresents unsupervised spectral-spatial adaptive boundary adjustmen.
Idioma: Inglés
Publicado por Springer Nature Singapore Feb 2021, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. 220 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 159,40
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Deep Learning for Hyperspectral Image Analysis and Classification | Linmi Tao (u. a.) | Buch | xii | Englisch | 2021 | Springer | EAN 9789813344198 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 232,32
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 236,27
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.