Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 160,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 210,92
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 9811970858 ISBN 13: 9789811970856
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 173,50
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements. The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.
Idioma: Inglés
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 9811970858 ISBN 13: 9789811970856
Librería: Revaluation Books, Exeter, Reino Unido
EUR 242,21
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 229 pages. 9.25x6.10x0.53 inches. In Stock.
Idioma: Inglés
Publicado por Springer Nature Singapore, 2023
ISBN 10: 9811970858 ISBN 13: 9789811970856
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the fundamentals of and latest advances in federated learningAddresses communication efficiency and privacy-preservation problems in federated learning Proposes applying evolutionary neural architecture search for federated learni.
Idioma: Inglés
Publicado por Springer Nature Singapore Dez 2023, 2023
ISBN 10: 9811970858 ISBN 13: 9789811970856
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements. The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses. 232 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 150,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Federated Learning | Fundamentals and Advances | Yaochu Jin (u. a.) | Taschenbuch | xi | Englisch | 2023 | Springer | EAN 9789811970856 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 221,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por Springer Nature Singapore, Springer Nature Singapore Dez 2023, 2023
ISBN 10: 9811970858 ISBN 13: 9789811970856
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements.The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 228,30
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.