Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 111,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 110,77
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 124,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 127,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 132,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 132,79
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 132,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer Netherlands, Springer Netherlands, 2012
ISBN 10: 9400730608 ISBN 13: 9789400730601
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 123,67
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi erentiable.Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed,thatis,both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints.
Idioma: Inglés
Publicado por Springer Netherlands Mrz 2012, 2012
ISBN 10: 9400730608 ISBN 13: 9789400730601
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 117,69
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi erentiable.Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed,thatis,both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints. 376 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 101,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Step-by-step guide to solving Nonlinear Inverse Problems with Least Square methodsContains a geometric theory to analyze Wellposedness and OptimizabilityDetailed analysis of practical issues when solving Nonlinear Least Square problems.
Librería: preigu, Osnabrück, Alemania
EUR 104,80
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Nonlinear Least Squares for Inverse Problems | Theoretical Foundations and Step-by-Step Guide for Applications | Guy Chavent | Taschenbuch | xiv | Englisch | 2012 | Springer | EAN 9789400730601 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Idioma: Inglés
Publicado por Springer Netherlands, Springer Netherlands Mär 2012, 2012
ISBN 10: 9400730608 ISBN 13: 9789400730601
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 117,69
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi erentiable.Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed,thatis,both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 376 pp. Englisch.