Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 68,17
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 81,68
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 68 pages. 8.66x5.91x0.16 inches. In Stock.
Idioma: Inglés
Publicado por Scholars' Press Jul 2019, 2019
ISBN 10: 613883819X ISBN 13: 9786138838197
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 45,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method. 68 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 68,38
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 71,18
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: moluna, Greven, Alemania
EUR 38,74
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Patel SwatiSwati is a keen researcher in various fields like data mining, internet security, cloud Computing and Image Processing. She holds master s degree in computer engineering from North Maharashtra University, Jalgaon, India wi.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 46,45
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.
Idioma: Inglés
Publicado por Scholars' Press Jul 2019, 2019
ISBN 10: 613883819X ISBN 13: 9786138838197
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 45,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 68 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 40,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. K-means Clustering Algorithm: Implementation and Critical Analysis | Swati Patel | Taschenbuch | 68 S. | Englisch | 2019 | Scholars' Press | EAN 9786138838197 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand.