Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642430465 ISBN 13: 9783642430466
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 64,15
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Dez 2014, 2014
ISBN 10: 3642430465 ISBN 13: 9783642430466
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 64,15
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Rules ¿ the clearest, most explored and best understood form of knowledge representation ¿ are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 94,45
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 111,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2012 edition. 352 pages. 9.30x6.20x0.80 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 119,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2012 edition. 352 pages. 9.30x6.20x0.80 inches. In Stock.
Publicado por Springer Berlin Heidelberg Dez 2014, 2014
ISBN 10: 3642430465 ISBN 13: 9783642430466
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 64,15
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data. 352 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642430465 ISBN 13: 9783642430466
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 57,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fills a significant gap in the machine learning literatureExplains the most comprehensive knowledge representation formalismOffers researchers and graduate students a clear unifying terminologyProf. Dr. Johannes Fuernkranz .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 97,42
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 98,85
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.