Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642081169 ISBN 13: 9783642081163
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 19919 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 22020 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20.5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 103,50
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642081169 ISBN 13: 9783642081163
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Special attention is devoted to the operators of mathematical physics. T.
Publicado por Springer Berlin Heidelberg Dez 2010, 2010
ISBN 10: 3642081169 ISBN 13: 9783642081163
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 19919 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 22020 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20.5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series. 284 pp. Englisch.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Dez 2010, 2010
ISBN 10: 3642081169 ISBN 13: 9783642081163
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware - 18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20.5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.