Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 99,81
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: Revaluation Books, Exeter, Reino Unido
EUR 102,72
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 328 pages. 8.66x5.91x0.74 inches. In Stock.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2016, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 63,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 328 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: preigu, Osnabrück, Alemania
EUR 54,80
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Automatic Tuning of Data-Intensive Analytical Workloads | Herodotos Herodotou | Taschenbuch | 328 S. | Englisch | 2016 | LAP LAMBERT Academic Publishing | EAN 9783330001404 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2016, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 63,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. 328 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: moluna, Greven, Alemania
EUR 52,15
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Herodotou HerodotosDr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Proc.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: Majestic Books, Hounslow, Reino Unido
EUR 100,43
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 103,18
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3330001402 ISBN 13: 9783330001404
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 63,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.