Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 101,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 125,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 135,02
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 122.
Idioma: Inglés
Publicado por Springer International Publishing, 2019
ISBN 10: 3319797751 ISBN 13: 9783319797755
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 147,88
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 124 pages. 9.25x6.10x0.28 inches. In Stock.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Mär 2019, 2019
ISBN 10: 3319797751 ISBN 13: 9783319797755
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.Authors pay attention to the four main findings of the book :Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis. Semantic relations among the words in thetext have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing, 2019
ISBN 10: 3319797751 ISBN 13: 9783319797755
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.- Semantic relations among the words in thetext have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 164,77
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Springer International Publishing Mrz 2019, 2019
ISBN 10: 3319797751 ISBN 13: 9783319797755
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.- Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis. 124 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 140,40
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 122.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 144,91
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 122.
Librería: preigu, Osnabrück, Alemania
EUR 95,70
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Prominent Feature Extraction for Sentiment Analysis | Basant Agarwal (u. a.) | Taschenbuch | xix | Englisch | 2019 | Springer | EAN 9783319797755 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.