EUR 49,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 51,52
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 332.
EUR 51,81
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd ed. 2015 edition. 332 pages. 9.00x6.25x1.00 inches. In Stock.
Publicado por Springer International Publishing, Springer Nature Switzerland, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 51,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 332.
Publicado por Springer International Publishing, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 47,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 52,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Publicado por Springer International Publishing AG, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
EUR 19,27
Convertir monedaCantidad disponible: 11 disponibles
Añadir al carritoCondición: Like New. Expedited orders RECEIVED in 1-5 business days within the United States. Orders ship SAME or NEXT business day. We proudly ship to APO/FPO addresses. 100% Satisfaction Guaranteed!
Publicado por Springer International Publishing, Springer Nature Switzerland Jun 2015, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell¿Lutz theorem describing points of finite order, the Mordell¿Weil theorem on the finite generation of the group of rational points, the Thue¿Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch.
Publicado por Springer International Publishing AG, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
EUR 27,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Expedited orders RECEIVED in 1-5 business days within the United States. Orders ship SAME or NEXT business day. We proudly ship to APO/FPO addresses. 100% Satisfaction Guaranteed!
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 78,45
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. New Copy. Customer Service Guaranteed.
Librería: dsmbooks, Liverpool, Reino Unido
EUR 92,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 52,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 332 This item is printed on demand.
Publicado por Springer International Publishing, Springer Nature Switzerland Jun 2015, 2015
ISBN 10: 331918587X ISBN 13: 9783319185873
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves. 356 pp. Englisch.