Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (13)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (12)
  • Como nuevo, Excelente o Muy bueno (No hay ningún otro resultado que coincida con este filtro.)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (1)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Encuadernación

  • Todas 
  • Tapa dura (13)
  • Tapa blanda (No hay ningún otro resultado que coincida con este filtro.)

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (6)
  • No impresión bajo demanda (7)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 40 (No hay ningún otro resultado que coincida con este filtro.)
  • Más de EUR 40 
Intervalo de precios personalizado (EUR)

Ubicación del vendedor

  • Yau, Stephen S.-T.; Chen, Xiuqiong; Jiao, Xiaopei; Kang, Jiayi; Sun, Zeju; Tao, Yangtianze

    Idioma: Inglés

    Publicado por Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: Goodbooks Company, Springdale, AR, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 51,60

    Envío por EUR 2,53
    Se envía dentro de Estados Unidos de America

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Condición: acceptable. This book is in acceptable condition and may have highlighting and or writing throughout. The actual cover image may not match the stock photo, dust jacket may be damaged or missing. Book may show internal and or external wear on spine or cover and may be slightly skewed or have creased pages. This is a used book so codes may be invalid or accompanying media may be missing. May be an Ex library book with stickers and stamps.

  • Stephen S.-T. Yau

    Idioma: Inglés

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 74,62

    Gastos de envío gratis
    Se envía dentro de Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in todays landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observationsa critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered. An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book.The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Yau, Stephen S.-T.; Chen, Xiuqiong; Jiao, Xiaopei; Kang, Jiayi; Sun, Zeju; Tao, Yangtianze

    Idioma: Inglés

    Publicado por Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: Books Puddle, New York, NY, Estados Unidos de America

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 98,84

    Envío por EUR 3,36
    Se envía dentro de Estados Unidos de America

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New.

  • Stephen S.-T. Yau

    Idioma: Inglés

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: CitiRetail, Stevenage, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 65,82

    Envío por EUR 42,61
    Se envía de Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in todays landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observationsa critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered. An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book.The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Stephen S.-T. Yau

    Idioma: Inglés

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: AussieBookSeller, Truganina, VIC, Australia

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 87,08

    Envío por EUR 31,16
    Se envía de Australia a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in todays landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observationsa critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered. An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book.The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Stephen S. -T. Yau

    Idioma: Inglés

    Publicado por Springer Nature Switzerland, Springer Nature Switzerland Dez 2024, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 69,54

    Envío por EUR 60,00
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Neuware -This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in today's landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 488 pp. Englisch.

  • Stephen S. -T. Yau

    Idioma: Inglés

    Publicado por Springer Nature Switzerland, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 69,54

    Envío por EUR 64,46
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in today's landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observations-a critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered.An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book.The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning.

  • EUR 65,23

    Envío por EUR 14,40
    Se envía de Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: Brand New. 487 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.

  • Stephen S.-T. Yau

    Idioma: Inglés

    Publicado por Springer, Berlin, Springer Nature Switzerland, Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 69,54

    Envío por EUR 23,00
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in today's landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come.With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observations-a critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered.An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book.The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning. 470 pp. Englisch.

  • Yau, Stephen S.-T.; Chen, Xiuqiong; Jiao, Xiaopei; Kang, Jiayi; Sun, Zeju; Tao, Yangtianze

    Idioma: Inglés

    Publicado por Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: Majestic Books, Hounslow, Reino Unido

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 98,71

    Envío por EUR 7,49
    Se envía de Reino Unido a Estados Unidos de America

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. Print on Demand.

  • Yau, Stephen S.-T.; Chen, Xiuqiong; Jiao, Xiaopei; Kang, Jiayi; Sun, Zeju; Tao, Yangtianze

    Idioma: Inglés

    Publicado por Springer Verlag GmbH, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: moluna, Greven, Alemania

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 60,06

    Envío por EUR 48,99
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.

  • Yau, Stephen S.-T.; Chen, Xiuqiong; Jiao, Xiaopei; Kang, Jiayi; Sun, Zeju; Tao, Yangtianze

    Idioma: Inglés

    Publicado por Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: Biblios, Frankfurt am main, HESSE, Alemania

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 100,96

    Envío por EUR 9,95
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. PRINT ON DEMAND.

  • Stephen S. -T. Yau (u. a.)

    Idioma: Inglés

    Publicado por Springer, 2024

    ISBN 10: 3031776836 ISBN 13: 9783031776830

    Librería: preigu, Osnabrück, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 62,35

    Envío por EUR 70,00
    Se envía de Alemania a Estados Unidos de America

    Cantidad disponible: 5 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Principles of Nonlinear Filtering Theory | Stephen S. -T. Yau (u. a.) | Buch | xix | Englisch | 2024 | Springer | EAN 9783031776830 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.