Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 26,71
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 32,78
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 35,09
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 1st ed. 2022. This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 22,91
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 26,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 25,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 29,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 54,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 75,66
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Regularized System Identification: Learning Dynamic Models from Data. Book.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 64,71
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 78,77
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: Rarewaves.com UK, London, Reino Unido
EUR 28,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 1st ed. 2022. This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Mai 2022, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 42,79
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors¿ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 42,79
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Idioma: Inglés
Publicado por Springer International Publishing Mai 2022, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 42,79
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book. 404 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Librería: moluna, Greven, Alemania
EUR 39,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Powerful tools lead to new principles and algorithms for various linear and nonlinear system identification techniquesCareful mathematics provide a rigorous basis for cross-fertilization between system identification and machine learningDev.
Librería: preigu, Osnabrück, Alemania
EUR 41,15
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Regularized System Identification | Learning Dynamic Models from Data | Gianluigi Pillonetto (u. a.) | Taschenbuch | xxiv | Englisch | 2022 | Springer | EAN 9783030958626 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.