Librería: Chiron Media, Wallingford, Reino Unido
EUR 25,19
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 29,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 44,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 51,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,23
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 104.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 68,97
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 84,56
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: Rarewaves.com UK, London, Reino Unido
EUR 28,12
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed.
Publicado por Springer Verlag, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: Revaluation Books, Exeter, Reino Unido
EUR 74,42
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 118 pages. 9.25x6.10x0.24 inches. In Stock.
Publicado por Springer International Publishing, Springer International Publishing
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
Publicado por Springer International Publishing Apr 2019, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 26,74
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics. 116 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 76,11
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 104.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 78,85
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 104.
Idioma: Inglés
Publicado por Springer International Publishing, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: preigu, Osnabrück, Alemania
EUR 50,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. On Stein's Method for Infinitely Divisible Laws with Finite First Moment | Christian Houdré (u. a.) | Taschenbuch | xi | Englisch | 2019 | Springer International Publishing | EAN 9783030150167 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Publicado por Springer International Publishing, Springer International Publishing Apr 2019, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 116 pp. Englisch.
Publicado por Springer International Publishing, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers connections between infinite divisibility and Stein s methodFirst to propose a general and unifying Stein s methodology for infinitely divisible law with finite first momentProvides quantitative versions .