Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 81,95
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 166,57
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 205,02
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 201,61
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. XI, 461 177 illus., 156 illus. in color. 1st ed. 2019 edition NO-PA16APR2015-KAP.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 177,37
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Okt 2020, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 171,19
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.
Idioma: Inglés
Publicado por Springer International Publishing, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reviews the state of the art in deep learning approaches to robust disease detection, organ segmentation in medical image computing, and the construction and mining of large-scale radiology databasesParticularly focuses on the application of convo.
Idioma: Inglés
Publicado por Springer International Publishing Okt 2020, 2020
ISBN 10: 3030139719 ISBN 13: 9783030139711
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation. 476 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 212,07
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. XI, 461 177 illus., 156 illus. in color.
Librería: preigu, Osnabrück, Alemania
EUR 150,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics | Le Lu (u. a.) | Taschenbuch | xi | Englisch | 2020 | Springer | EAN 9783030139711 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 214,74
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. XI, 461 177 illus., 156 illus. in color.