Idioma: Inglés
Publicado por Engineering Science Reference, 2020
ISBN 10: 1799872068 ISBN 13: 9781799872061
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 239,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Engineering Science Reference, 2020
ISBN 10: 1799872068 ISBN 13: 9781799872061
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 241,91
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 251,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 262,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Idioma: Inglés
Publicado por Engineering Science Reference, 2020
ISBN 10: 1799872068 ISBN 13: 9781799872061
Librería: moluna, Greven, Alemania
EUR 260,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnAll machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doi.
Idioma: Inglés
Publicado por Engineering Science Reference, 2020
ISBN 10: 1799872068 ISBN 13: 9781799872061
Librería: preigu, Osnabrück, Alemania
EUR 270,20
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Data-Driven Optimization of Manufacturing Processes | Kanak Kalita (u. a.) | Buch | Gebunden | Englisch | 2020 | Engineering Science Reference | EAN 9781799872061 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Idioma: Inglés
Publicado por Engineering Science Reference, 2020
ISBN 10: 1799872068 ISBN 13: 9781799872061
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 324,91
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.